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Abstract

This thesis is concerned with topological solitons of static type in supersymmetric gauge
theories and especially vortices of Abelian and non-Abelian kind with an arbitrary gauge
symmetry. We put emphasis on the gauge theories with orthogonal and unitary-symplectic
gauge symmetry but in many cases we keep the group arbitrary. We investigate the moduli
spaces of vortices of local and semi-local kind where the latter are related to lumps in the
low-energy effective theories, that in turn are related to the Kähler quotient construction,
which we obtain explicitly. The moduli space is studied systematically using the so-called
moduli matrix formalism which exhausts all moduli of the vortex and we cross-check with
an index theorem calculation. We consider theories both with and without Chern-Simons
interactions for the gauge fields, where in the case of only the Yang-Mills kinetic term and of
only the Chern-Simons term present in the theory, we find the same moduli spaces of vortices
for a class of theories. Finally, we investigate so-called fractional vortices which are energy-
substructures appearing in various theories due to either deformations or singularities on the
target space of the soliton’s low-energy effective theories.



Riassunto

Questa tesi tratta di solitoni topologici statici nelle teorie di gauge supersimmetriche, e in
particolare dei vortici Abeliani e non-Abeliani con simmetria di gauge arbitraria. Ci occu-
piamo specialmente delle teorie di gauge con simmetria ortogonale e simplettica unitaria,
lasciando però il gruppo più generico possibile nella maggior parte dei casi. Investighiamo
sopratutto lo spazio dei moduli dei vortici locali e non locali, dove questi ultimi sono con-
nessi a dei lumps nelle teorie efficaci di bassa energia, che sono a loro volta connessi ai
quoziente di Kähler che abbiamo trovato esplicitamente. Lo spazio dei moduli è stato stu-
diato sistematicamente usando il cosiddetto formalismo della matrice dei moduli e facendo
un controllo incrociato con il risultato ottenuto utilizzando il teorema dell’indice. Consid-
eriamo poi le teorie con e senza il termine di interazione di Chern-Simons per i campi di
gauge, e troviamo che nel caso della teoria con solo il termine di Chern-Simons e il caso
con solo il termine di Yang-Mills, hanno lo stesso spazio dei moduli. Infine, investighiamo
i cosiddetti vortici frazionari, sottostrutturati nella densità d’energia, che appaiano in varie
teorie a causa o delle deformazioni o delle singolarità sullo spazio target della teoria efficace
del solitone.

Resumé

Denne thesis drejer sig om topologiske, statiske solitoner i supersymmetriske gauge teorier,
og specielt Abelske og ikke-Abelske vortex-løsninger med arbitrær gauge symmetri. Vi
lægger vægt på gaugeteorier med ortogonal og unitær-symplektisk gauge symmetri, men
i mange tilfælde lader vi gruppen være fuldstændig arbitrær. Vi undersøger modulimang-
foldigheden af lokale og semi-lokale vortex-løsninger, hvor de sidstnævnte har forbindelser
til klumpe-løsninger i effektive lav-energi-teorier, som er forbundet med Kähler-kvotient-
konstruktioner som vi har fundet eksplicit. Modulimangfoldigheden er blevet studeret sys-
tematisk ved hjælp af den såkaldte moduli matrix formalisme, som finder alle moduli for
vortexen og vi laver ydermere et krydstjek med en indeksteoremsberegning. Vi studerer både
teorier med og uden Chern-Simons vekselvirkninger for gauge felterne, og vi finder ud af at i
tilfældet med kun et Yang-Mills-led og kun et Chern-Simons-led i en klasse af teorier, har de
begge de samme mangfoldigheder som deres modulimangfoldigheder af vortex-løsninger.
Til sidst men ikke mindst, undersøger vi såkaldte fraktionale vortex-løsninger, som er un-
derstrukturer i energidensiteten i forskellige teorier, som er til stede enten på grund af defor-
mationer eller singulariteter i målmangfoldigheden af solitonens effektive lav-energi-teori.
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CHAPTER 0

Introduction and motivation

Solitons play an important role in a vast range of physics, from condensed matter physics,
fluid dynamics through particle physics and cosmology to string theory. The most famous
soliton, namely the vortex [11, 12] has been observed experimentally in type II supercon-
ductors in solid state physics, forming a so-called Abrikosov lattice.

In cosmology, strings, not of fundamental nature like the superstrings of string theory,
but larger, very heavy strings – cosmic strings [13, 14, 15], are thought to be able to teach us
about the physics of the early Universe, where large string webs explain the filaments and
voids on the largest scales of the Universe, giving rise to density inhomogeneities. Unfor-
tunately, a series of measurements (made by COBE and WMAP) in the cosmic microwave
background (CMB) radiation exhibits so-called acoustic peaks, which rule out the cosmic
strings as topological defects in the early Universe. These measurements however are well
described within the so-called inflation models for cosmology.

In solid state physics, in particular in relation with the fractional quantum Hall effect,
effective field theory descriptions of co-dimension 2, specifically including Chern-Simons
interactions have proven especially important. This interaction changes the effective spin
of a field depending on the coupling constant through the Aharonov-Bohm effect. An ef-
fective description of condensing electrons in a superconducting quantum Hall fluid can be
described by a scalar field theory with some opportune Chern-Simons interaction.

One of the most important open problems in particle physics came along with the solu-
tion to the strong interactions, Quantum Chromodynamics (QCD), namely the asymptotic
freedom yields good ultra-violet behavior, but on the contrary renders perturbation theory
rather useless in the infra-red. However, this confinement of quarks is rather welcome as it
explains why no free quarks have been observed. Nevertheless, in order to get back calcula-
bility, new methods are needed, that is, so-called non-perturbative methods are of necessity
in this arena.

The most promising idea of a confinement mechanism is due to ’t Hooft and Mandel-
stam which is a dual superconductor where the role of electric and magnetic charges are
swapped. If then magnetic monopoles are condensed in the vacuum of QCD, the electric
(color) sources are confined by flux tubes, i.e. vortices giving rise to linear Regge trajecto-
ries. These were in fact the reason for the earlier proposed dual models of strings describing
the strong interacting sector (which however were discarded due to among other problems
the tachyon in the spectrum). This idea however is not so easily realized and in fact it was
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first in supersymmetric (N = 2) theories that this type of confinement mechanism was
realized through the full solubility provided in Seiberg-Witten theory (however this is not
QCD). One of the mayor breakthroughs in quantum field theory in the nineties, was indeed
the seminal papers by Seiberg and Witten [16, 17] which in extended N = 2 supersymmet-
ric gauge theories found exact solutions of the low-energy effective theory. This was done
exploiting the holomorphy of the superpotentials, non-renormalization theorems, the exact
quantum corrections combined with the summation of the all-order contribution of instan-
ton effects. This remarkable and enlightening result yielded not only a powerful method in
field theory, the so-called Seiberg-Witten curve, but also demonstrated cleanly the ideas of
electric-magnetic duality and confinement. This type of confinement found is however of
an Abelian nature.

An interesting open problem in the context of confinement, where the vortex is a flux
tube of color charges for condensed magnetic monopoles, is related to the quantization and
duality due to Goddard, Nuyts, Olive and Weinberg (GNOW), who conjectured that the
transformations of the monopoles are according to the dual of the unbroken gauge group.
One of the remaining open problems in this relation are the difficulties that arise in quantiz-
ing the monopoles as there are non-normalizable zero-modes. Furthermore, there emerges a
so-called topological obstruction in defining the unbroken gauge group for the monopoles.
The non-Abelian vortex kicks in a good hope in this connection because of the calculability
to a very high extent and therefore might shed light on the so far more obscure parts of this
scenario, namely the monopoles. It is so far unknown which kind of monopoles would be
relevant for a QCD-type confinement mechanism, that is, of Abelian or non-Abelian nature.
All these open questions are further motives for studying these solitons of non-Abelian kind.

A final motivation for studying non-Abelian vortices is a vortex of a somewhat different
kind, namely with non-Abelian first homotopy group. These are so-called quantized vortices
[18, 19] which have been studied recently, exhibiting not only a non-trivial phase factor like
normal vortices but combining it with a rotation of spin or orbital orientation. This type of
vortices enjoys non-Abelian and non-commutative properties which are severely important,
for instance, in collisions. Here so-called rung-vortices [20] can arise in many cases, which
are deeply rooted in the non-Abelian nature. These systems with their vortices are especially
interesting not only per se, but also due to the potential applications. Not only the theoretical
part can be further studied but proposals for experiments are also possible here, for example
in Bose-Einstein-Condensates (BECs), biaxial nematic liquid crystals and superconductors
with high internal degrees of freedom.

With a list of motivations at hand, let us step back and describe what topological solitons
are.

0.1 Topological solitons
A wave packet in some field that does not change its shape and intensity over time is

called a solitary wave. If furthermore two solitary waves retain their shapes after a collision
among them, they are denoted solitons. Sometimes both are called by the most popular
name, solitons. Our interest lies in the class of solitons which have a topological origin.
They will however not in general pass through each other with no change in velocities as
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they might slow down a bit and spit off some elementary quanta of light or other elementary
particles.

Let us start with the simplest example of a static, topological soliton or topological
defect, namely the domain wall. It belongs to a large class of solitons which are tightly
associated with spontaneous symmetry breaking (SSB), which usually is generated by some
scalar fields acquiring a vacuum expectation value (VEV). But it could also be due to the
formation of some fermion condensate. The easiest example may be demonstrated in this
real scalar field theory in 1 + 1 dimensions

L =
1

2
∂µφ∂

µφ− λ

4

(
φ2 − ξ)2

, λ, ξ > 0 , (1)

which enjoys a Z2 symmetry φ → −φ, which however is broken by the vacuum: Z2 → 1.
The scalar field can choose between two vacua, φ = −√ξ and φ =

√
ξ, which both imply a

vanishing energy density. Consider now a configuration that has the first vacuum φ = −√ξ
at x → −∞ and the second vacuum φ =

√
ξ at x → ∞. When φ has to traverse φ = 0, it

will create a non-zero energy density – a solitonic particle.
Most famous are the vortices which are supported by the first homotopy group of the

vacuum manifold of a field theory: π1(M) = Z. For a non-trivial second homotopy group
π2(M) = Z, monopoles and lumps can be supported while for the third one π3(M) = Z
so-called Skyrmions (also denoted textures) have support. The first two have linear field
theories as origin (though non-linear field equations), while the last has a non-linear one.
In general, this type of defect is characterized by the l-th homotopy group πl(M) of the
vacuum manifoldM. This gives us a soliton of co-dimension l+1 having a d− l−2 world-
volume, where d is the number of space-time dimensions. Classifying instead in terms of
co-dimensions, a (non-trivial) one dimensional field configuration interpolating two vacua
of a field theory is a domain wall, while for two dimensions we are back to the vortex, for
three dimensions it is a monopole and finally in four dimensions there is a possibility for an
instanton.

An important question is about the stability of static solitons and in fact Derrick’s no-go
theorem [21] which is based on a scaling argument tells us that no finite energy field con-
figuration in more than one spatial dimension, other than the vacuum, can have a stationary
point, which means that no finite energy solitons in spatial dimensions d̂ > 1 are stable. Let
us review this calculation briefly. Considering for simplicity a scalar field under rescaling
x → µx, φ(x) → φ(µx), then the derivative scales like ∂i → µ∂i while the integration
measure picks up a Jacobian factor of µ−d̂. Let us further assume that the field describes
a non-trivial stationary solution. That is, it should be a critical configuration of the energy
functional

E[φ(x)] =

∫
Rd̂
dd̂x

{|∂iφ(x)|2 + V [φ(x)]
}
, (2)

which means that

dE[φ(µx)]

dµ

∣∣∣∣
µ=1

= 0 . (3)
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We then easily find that

E[φ(µx)] =

∫
Rd̂
dd̂(µx)

{
µ2−d̂|∂iφ(µx)|2 + µ−d̂V [φ(µx)]

}
. (4)

Combining the two Eqs. (3) and (4) leaves us with

(2− d̂)

∫
Rd̂
dd̂(µx) |∂iφ(µx)|2 = d̂

∫
Rd̂
dd̂(µx) V [φ(µx)] , (5)

which gives us two possibilities. For d̂ = 1 we can have non-trivial stationary solutions,
while for d̂ = 2 we can only have interesting solutions for V = 0 which are harmonic
maps corresponding to σ model lumps. We will see that there are several ways to evade
the obstacle, especially in the case of d̂ = 2 which will be the most studied case in this
Thesis. Let us take one step further and consider the addition of a gauge field, we see that
for making the covariant derivative scale covariantlyDµ → µDµ, the gauge field has to scale
like Aµ → µAµ and thus we have

E[φ(µx)] =

∫
Rd̂
dd̂(µx)

{
1

4g2
µ4−d̂F 2

µν(µx) + µ2−d̂|Diφ(µx)|2 + µ−d̂V [φ(µx)]

}
. (6)

This shows clearly that for d̂ = 2, the gauge fields can balance the scaling due to the po-
tential, thus giving rise to vortices. We will delve into those later. A final comment on the
scaling arguments is the observation that in four spatial dimensions, the gauge field interac-
tions do not scale

E[φ(µx)] =

∫
Rd̂
dd̂(µx)

{
1

4g2
µ4−d̂F 2

µν

}
, (7)

and does indeed give rise to a soliton without any SSB – the instanton, which we will turn
to next.

Indeed the most important soliton in high energy physics might be the instanton which
was found by Belavin, Polyakov, Schwartz and Tyupkin (BPST) in Ref. [22] in pure SU(2)
Yang-Mills theory as a solution to the renowned self-dual equation. The Yang-Mills action
can be written as

S = − 1

2g2
Tr
∫

R4

FµνFµν

= − 1

4g2
Tr
∫

R4

{
(Fµν ∓ ?Fµν)

2 ± 2Fµν
?Fµν

}
, (8)

which has a lower bound on the action given by S = k(8π2)/g2 where k is the instanton
number. The bound is saturated when the self dual equation

Fµν = ±?Fµν , (9)

is satisfied. Instantons are somewhat different than the other topological defects and solitons
that we have mentioned so far. There is no need for spontaneous symmetry breaking here.
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So what is the topology argument? It is simply the boundary of space-time ∂R4 ' S3 which
is mapped to the gauge group SU(2) ' S3. This is a well-known problem in topology, and
the maps are characterized by π3(S3) = Z 3 k. Hence the instant number is of a topological
origin. An interesting comment in store is to note that the action is inversely proportional
to the gauge coupling constant squared: S ∝ g−2, while the quantum amplitudes described
by the partition function behave as Z ∼ e−S . Hence the instantons become important at
strong coupling. Instantons can be interpreted as particles in a 4 + 1 dimensional space-
time, where they are simply static soliton solutions to the self-dual equation (9). In 3 + 1
dimensions, however, the formal instanton solution in Euclidean space-time, makes it not a
particle in space, but an instantaneous event in space-time, hence the name instanton. This
can seem like an odd and non-important technicality, but it turns out, as already mentioned
that they dominate the path-integral, which makes ultimately sense by wick-rotating the
physical action.

A remarkable solution to the self-dual equation was found by Atiyah, Drinfeld, Hitchin
and Manin (ADHM) and commonly denoted the ADHM construction [23]. This solution
provides a formal solution which is self-dual by construction and in the cases of N ≤ 3
explicit solutions have been obtained [24, 25]. Finally, one of the most important implica-
tions of instantons probably is the resolution of the so-called U(1) problem by ’t Hooft [26],
which via the axial current anomaly explains the excessively large mass of the η′ particle,
which otherwise is a would-be Goldstone boson.

Let us make a comment about supersymmetry. It turns out that the critical coupling of
vortices, the boundary between type I and type II corresponds to solutions preserving some
amount of supersymmetry and can be obtained by dimensional (Scherk-Schwarz) reduc-
tion from four-dimensional Euclidean instantons. Working with four dimensions, we have
eight supercharges in N = 2 extended supersymmetric theories and the instantons preserve
exactly half, hence the notion 1/2-BPS solitons. The same goes for monopoles, vortices
and domain wall in these theories. Combining the solitons of different kinds, for instance
vortices with domain walls yields 1/4 BPS composite objects [27, 28, 29, 30].

A final comment about instantons is their beautiful D-brane picture realization. In two
words, D-branes are 1/2 BPS solitons in string theory on which fundamental strings (F-
strings) can end on. It furthermore turns out that D-branes have gauge theories living on their
world-volume (a U(1) gauge theory to be precise) while a stack of N coincident D-branes
have a U(N) gauge theory on their world-volume. To this end, a D4-brane enjoys a 4 + 1
dimensional gauge theory and we already mentioned that the instanton can be interpreted
as a particle in exactly this “space-time”. Here the particles are manifested in terms of D0-
branes, which are point-like branes. It was discovered that the coupling of D0-branes to
D4-branes provides exactly the moduli space of k instantons in the world-volume of the
D4-branes, where k is simply the number of D0-branes [31, 32, 33] and exhibits 8k real
parameters which are precisely the moduli of k instantons.

Let us close the book on instantons for now, leave the interested reader to the literature
and move on to the most famous particle not (yet) discovered:1 the magnetic monopole. The
monopoles are in fact disallowed by Maxwell’s equations which in turn is due to the Bianchi

1Let us define the Higgs to be discovered in the sense that the masses of theW -bosons have been measured,
“only” the mass and constituent nature remain still a task for the Large Hadron Collider (LHC) to discover.
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identity in classical electromagnetism. However, Dirac noticed that there is a striking duality
between the electric equations of motion and the magnetic ones [34, 35]

∂µF
µν = −jµ , ∂µF̃

µν = −kµ , F̃ µν ≡ 1

2
εµνρσFρσ , (10)

which are manifestly invariant under (F, F̃ ) → (F̃ ,−F ) together with (j, k) → (k,−j).
The monopoles in Abelian gauge theory named after Dirac are singular, however in non-
Abelian gauge theories, non-singular monopoles were found by ’t Hooft and Polyakov
[36, 37, 38]. Especially, in an SU(2) gauge theory with adjoint scalars fields, a symme-
try breaking that gives rise to π2(SU(2)/U(1) ' S2) = Z does indeed support monopoles
topologically. An important implication of the presence of just a single monopole is that
suddenly all electric charges are quantized due to the relation

qQ

4π
= n ∈ Z , (11)

where q is the electric charge while Q is the magnetic charge. The quantization gets more
involved for higher-rank gauge groups and this is the already mentioned story of the GNOW
duality.

An important development in the monopoles was due to Nahm [39], who constructed all
the solutions to find the moduli space of monopoles. This solution bears the name the Nahm
construction, which is somewhat similar to the ADHM construction for instantons. The
moduli space of monopoles was then used by Manton [40], to describe adiabatic dynamics
of multiple monopoles. For this reason it is denoted the moduli space approximation or the
geodesic approximation, because the monopoles can simply be described by the low-energy
effective theory on the moduli space of the monopoles. This technique has been adapted to
many other soliton systems as well.

Another type of duality is also sometimes present in solitonic systems. Consider a
generic theory with a SSB giving rise to a VEV 〈φ〉 =

√
ξ with a potential coupling λ.

Then the mass-squared of the scalar field is ∼ λ
√
ξ, while the mass of the soliton is

√
ξ.

Thus at weak coupling λ � 1, the soliton is much heavier than the elementary particle,
while the situation is exactly opposite in the strong coupling regime. This is a hint of some
of the importance of solitons in gauge theories. A prime example was found between the
sine-Gordon model and the massive Thirring model in 1 + 1 dimensions by Coleman [41].

Finally, an electromagnetic duality has been conjectured in gauge field theories by Mon-
tonen and Olive [42]. On one side of the duality there is a perturbative spectrum of elemen-
tary gauge particles of an unbroken gauge group, while on the other side of the duality there
are dual gauge fields where monopoles are in the perturbative spectrum. Not only do the
Noether currents get interchanged with the topological currents but the coupling constant
gets interchanged with its inverse. In N = 4 super Yang-Mills theory this duality has been
checked to some extent in Refs. [43, 44, 45, 46], for instance by reducing S-duality to T-
duality. In string theory [47] the picture of the electromagnetic duality is somewhat more
intuitive, where the duality generically is denoted S-duality which acts on the complex cou-
pling constant τ = a+ ig−1

s , where a is the VEV of a massless Ramond-Ramond scalar and
gs is the string coupling constant. In this context, the N = 4 super Yang-Mills theory lives
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on the world-volume of N D3-branes on which both D1-branes (D-strings) and F-strings
can end. Here the F-strings represent electrically charged gauge particles while D-strings
are monopoles. These are interchanged under S-duality while the coupling is inverted. It is
intriguing (a dream of some theoretical physicists) that in some models, weakly and strong
coupled theories are mutually related by a duality.

Now we will take a breath from all the strings of fundamental kind and step back to what
will be our main concern in this Thesis, namely magnetic flux tubes – vortices.

0.2 Vortices
Considering now two spatial dimensions, there are at least three ways around the at

first disappointing no-go theorem by Derrick: stabilizing the configuration with some flux;
adding angular momentum (which leads to so-called Q-lumps); adding higher derivative
terms (which leads to so-called baby-Skyrmions). We stick to the first resolution to the
problem and add a flux, i.e. we shall consider a gauge theory. Taking a local U(1) gauge
theory and breaking completely the gauge symmetry in the vacuum: U(1) → 1, we have
the topological support

π1 (U(1)) ' π1

(
S1
)

= Z 3 k , (12)

which is the basics of the Abrikosov-Nielsen-Olesen (ANO) vortex. To understand this
support, it is useful to think about what happens pictorially. The soliton solution is time
independent, and we can think of just an xy-plane with a scalar field configuration. The
potential is broken from being in a symmetric phase to enter an asymmetric phase. This
is done with the Higgs mechanism or in supersymmetric theories we say adding an Fayet-
Iliopoulos parameter ξ > 0, which puts the theory on the Higgs branch. To consider a
simple example we can think about

V =
λ

2

(|φ|2 − ξ)2
, (13)

which is a λ|φ|4 potential possessing spontaneous symmetry breaking. The soliton support
comes from a non-trivial mapping that maps the spatial infinity of the field configuration
onto the vacuum manifold, see Fig. 1. Clearly the field cannot change its magnitude at infin-
ity and in the same time belong to a class of finite energy configurations. The phase however
can turn k ∈ Z times. This wrapping on a circle called vorticity, cannot be unwrapped with
a finite energy and the soliton is thus (classically) stable.

Extending this type of vortex configuration, we will start by considering a larger sym-
metry group, say SU(N) but still only gauge a U(1) subgroup (we say we add flavors to
the theory). This type of model is termed semi-local, because only some of the symmetry
is gauged. The symmetry breaking this time however is not supported by a non-trivial first
homotopy group as

π1

(
SU(N)

U(1)× SU(N − 1)

)
= 1 , (14)
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Figure 1: Sketch of a mapping from spatial infinity of a scalar field configuration onto the vacuum
manifold. This is characterized by the first homotopy group π1.

however, the local part is still the same, hence some stability is expected, which turns out to
hold; the result of Ref. [48] shows that for type I superconductivity (β < 1) the embedding
of a local (ANO) vortex is indeed stable. Considering the second homotopy group

π2

(
SU(N)

U(1)× SU(N − 1)

)
= Z , (15)

thus provides topological stability, however this second homotopy group gives support to so-
called lump solutions. Lumps can be thought of as vortices at very strong gauge coupling or
very low energy. For these semi-local vortices it works quite well, however, for local (ANO)
vortices, the size of the vortex goes as the inverse gauge coupling constant and leaves behind
only a delta-spike. In the associated non-linear σ model (NLσM), these are denoted small-
lump singularities (where the name is somewhat inspired from small instanton singularities).

In the gauge theories under consideration, a potential is necessary to break the symmetry
spontaneously and the gauge fields are needed to stabilize the interpolating solutions. There
will be a particular coupling of the potential where the equations of motion will decrease
in order from second to first order differential equations. This turns out to be due to an
enhanced symmetry, namely supersymmetry, which gets restored at this point. Rewriting
the energy functional in terms of a sum of squares with just a surface term and a term
being the magnetic flux is called the Bogomol’nyi completion (or sometimes Bogomol’nyi
trick) and the first order equations are called BPS-equations (due to Bogomol’nyi-Prasad-
Sommerfield) for when obeyed, the system saturates the Bogomol’nyi bound. For the ANO
vortex the coupling of the quartic potential in the Abelian-Higgs model has three types of
vortices: for β > 1 (β < 1) it yields type II (I) vortices, while for β = 1 it has BPS vortices.
A more physical explanation for this critically coupled theory is that the force due to the
scalar field exactly cancels the force due to the magnetic field. Thus the net force between
critically coupled (BPS) vortices vanishes. This kind of cancellation often takes place in
supersymmetric field theories.

Along the lines of the extension to the semi-local vortex we could consider gauging the
full SU(N) symmetry. This does not support the vortex of the same kind, instead

π1(SU(N)/ZN) = ZN , (16)

which is denoted a ZN -string. The trick to obtain the, what has been shown to be, the
interesting type of non-Abelian vortices, is to include an overall U(1) factor, for example
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considering a U(N) gauge theory with the symmetry breaking pattern U(N)→ 1:

π1(U(N)) = Z . (17)

In analogy with the Abelian ANO vortices, the system can be BPS saturated for a particular
coupling of the potential which is a point of special interest. Namely a moduli space of
solutions – all with the same tension – is present in the theory and for a single non-Abelian
vortex in this particular U(N) model (which enjoys N = 2 supersymmetry) turns out to
have a moduli space being CPN−1 ' SU(N)/[SU(N − 1)× U(1)].

Until now we had four dimensional spacetime in mind, however if we relax this con-
straint and step down to three dimensions, two immediate things happen: the renormaliz-
able potential can now be of sixth order and the gauge fields can be controlled by a Chern-
Simons interaction (which is possible only in odd dimensions). The Chern-Simons term is
of topological origin, viz. there is no contraction with the metric. The vortex constructed
in a theory with a Chern-Simons kinetic term is a “dyonic” configuration having electric
charge attached to its magnetic flux and moreover can alter its spin and angular momentum
by changing the Chern-Simons coupling constant. There are now three possibilities, having
a Maxwell kinetic term, a Chern-Simons term or both. Having both the terms gives rise to a
complex system which can interpolate between Chern-Simons vortices and ANO vortices.
We will come back to the Chern-Simons theories in the course of the next Chapter, where
we will construct the mentioned kinds of vortex in much more detail.

0.3 Kähler and hyper-Kähler quotients
An important technology that we will use to construct approximate solutions for semi-

local vortices (viz. lumps) is the Kähler quotient construction. This fact is intimately related
to that strong gauge coupling or long distance correspond to limits which are well-described
by a low-energy effective theory where the vector multiplet, the gauge fields, have been
integrated out. In the following we will only consider supersymmetric gauge theories. To
be precise, the Higgs branch of N = 2 supersymmetric QCD is hyper-Kähler and the low-
energy effective theory on this Higgs branch is described by an N = 2 non-linear σ model
(NLσM) on the hyper-Kähler manifold [17, 49, 50].

The target space of the N = 1 and N = 2 supersymmetric NLσMs, with four and eight
supercharges, was in fact studied much earlier and it was shown to be Kähler [51] and hyper-
Kähler [52], respectively. The notion of the hyper-Kähler quotient was first found in physics
in the Refs. [53, 54, 55, 56], but was later formulated mathematically by Hitchin, Karlhede,
Linström and Rǒcek [57] (we recommend Ref. [58] as a review for physicists). It was
found that a U(1) hyper-Kähler quotient [53, 54, 55] recovers the Calabi metric [59] on the
cotangent bundle over the projective space, T ?CPN−1, while its U(N) generalization leads
to the cotangent bundle over the complex Grassmann manifold, T ?GN,N [56]. The hyper-
Kähler manifolds also appear in the moduli spaces of Bogomol’nyi-Prasad-Sommerfield
(BPS) solitons such as Yang-Mills instantons [23, 24, 60, 61] and BPS monopoles [62, 63].
The hyper-Kähler quotient offers a powerful tool to construct these hyper-Kähler manifolds:
instanton moduli spaces [23] and monopole moduli spaces [64]. Gravitational instantons
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[65, 66], Yang-Mills instantons on gravitational instantons [67, 68] and toric hyper-Kähler
manifolds [69] are all constructed using the hyper-Kähler quotient.

Let us step back to our gauge theories. In the cases of an SU(N) or a U(N) gauge theory
with hypermultiplets charged commonly under U(1), the metrics on the Higgs branch and
their Kähler potentials are known explicitly and are given by the Lindström-Roček metric
[56]. Another example is the U(1)×U(1) gauge theory with three hypermultiplets of certain
charges which gives the space: T ?Fn with Fn being the Hirzebruch surface [70]. The Higgs
branches of quiver gauge theories are known to be gravitational instantons and Yang-Mills
instantons on gravitational instantons [65, 67, 68].

A lump solution was first found in theO(3) σ model, or the CP 1 model by Polyakov and
Belavin [71]. It was then later generalized to the CP n model [72, 73, 74], the Grassmann
model [75, 76, 77], and other Kähler coset spaces [78, 79]. Lumps are topological solitons
associated with π2(M) with M being the target Kähler manifold. Their energy saturates
the BPS bound of the topological charge written as the Kähler form of M pulled-back
to the two-dimensional space.2 The lump solutions preserve half of supersymmetry, when
embedded into supersymmetric theories. The dynamics of lumps was studied [82, 83] by the
already mentioned moduli space (geodesic) approximation. Lumps are related to vortices in
gauge theories as follows. U(1) gauge theories coupled to several Higgs fields often admit
semi-local vortex-strings [84, 85]. In the strong gauge coupling limit, gauge theories reduce
to NLσMs whose target space is the moduli space of vacua in the gauge theories, and in this
limit, semi-local strings reduce to lump-strings. For instance, a U(1) gauge theory coupled
to two charged Higgs fields reduces to the CP 1 model, while the semi-local vortex-strings
in Refs. [84, 85] reduce to the CP 1 lumps [86, 48, 87]. In the gauge theories at finite
coupling, the large distance behavior of semi-local strings is well approximated by lump
solutions. The sizes or widths of semi-local strings are moduli of the solution in the BPS
limit, and accordingly, the lumps also possess size moduli. When the size modulus of a semi-
local string vanishes, the solution reduces to the Abrikosov-Nielsen-Olesen (ANO) vortex
[11, 12] which is called a local vortex. This limit corresponds to a singular configuration
in the NLσM, which is called the small lump singularity. Lumps and semi-local strings are
also candidates of cosmic strings, see e.g. Refs. [88, 89, 90, 91, 92, 93], and appear also in
recent studies of D-brane inflation etc. [94, 95, 96].

0.4 A brief overview of the related literature
The non-Abelian vortex, which here means the vortex solution which exhibits non-

Abelian color-flux and orientational modes, was discovered by the two groups, MIT [9] and
Pisa [97], independently. The solutions were made in unitary groups G = U(N), where the
crucial difference, with respect to the previously found ZN strings, lies simply in the overall
U(1) factor giving rise to topological stability of the type π1(G) = Z. In the seminal paper
[9], a brane construction was given and the moduli space was found by use of the Kähler
quotient construction in the case of a single vortex or k separated vortices and furthermore,

2In the case of hyper-Kähler manifolds there exists a triplet of complex structures and Kähler forms. Ac-
cordingly, it has recently been found that there exists a BPS bound written by the sum of three different Kähler
forms to three different planes in the three dimensional space [80, 81, 30].
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the number of bosonic zero-modes were counted by means of index theorem methods. In
the mean time the Tokyo group has been studying domain walls and junctions thereof in
N = 1, 2 supersymmetric theories and shortly after the discovery of the non-Abelian vor-
tex, they found a systematic formalism to uncover the full moduli space of domain walls
[98, 29, 99] which soon after was adapted to the non-Abelian vortices [100] and thus also in
that case, they could systematically find all the moduli of the system. Around the same time
non-Abelian vortices were also studied in six-dimensional space-time [101]. Also instantons
were studied in the Higgs phase [102].

The problems of non-Abelian monopoles and the non-Abelian generalization of a dual
superconductor describing a confinement mechanism were studied in Refs. [103, 104, 105].

A duality between two and four dimensions was found through the non-Abelian vortices
[106], which explains the matching of the BPS-spectra found much earlier by Nick Dorey in
these two different theories [107]. The two-dimensional theory on the vortex world-sheet,
which in the case of the U(2) group is a CP 1 σ model, exhibits also kinks, which turn
out to be Abelian monopoles in the four-dimensional theory [8]. Later it was found in the
mass deformed N = 2 theory, that a supersymmetry emergence takes place [108], giving
rise to exactly this kind of kink-monopole on the world-sheet of the vortex, having two
supersymmetries whereas in the bulk theory the monopole does not have any central charge
at all.

The moduli space of two coincident non-Abelian U(2) vortices, which is important also
in the reconnection of cosmic strings, was studied in Ref. [109] by string-theory techniques
and in Refs. [110, 111] by field theory techniques which differ by a discrete quotient giving
rise to a conifold singularity in the moduli space. A demonstration that reconnection of
non-Abelian strings of local or semi-local type is indeed universal was made in Ref. [112].

Manifestly supersymmetric effective Lagrangians were studied with the field of the mod-
uli matrix formalism directly present in the Lagrangian density [113] and a duality between
non-Abelian vortices and domain walls was found in Ref. [114].

In models with unitary gauge groups, adding additional flavors of squark matter to the
theory, that is, considering the number of flavors greater than the number of colors, gives
rise to so-called semi-local zero-modes which by their nature are non-renormalizable. This
type of non-Abelian vortices was studied in Refs. [115, 116].

A superconformal non-Abelian vortex string was also studied in Ref. [117] where it is
shown that the theory flows into an infra-red superconformal fixed point at low energies.

In connection with studying the dual models of confinement, the choice of different
gauge groups is interesting and could give important hints about this fascinating topic. This
gave rise to line of research investigating non-Abelian vortices with especially SO(N) gauge
groups [118], generic gauge groups [6] and in very much detail SO(N), USp(2M) [3].
In this connection, the Kähler quotient and hyper-Kähler quotient for studying the gauge
theories as well as the corresponding lumps as effective low-energy approximation to the
vortices was studied in detail in Ref. [5]. This also gave rise to questions about the stability
of semi-local non-Abelian vortices [119], as well as the impact of non-BPS corrections on
the BPS vortex systems and interactions [120, 121].

A calculation of the partition function of statistical mechanics for non-Abelian BPS
vortices on a torus was studied in Ref. [122]. The coupling of the non-Abelian strings with
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gravity was also studied in Ref. [123].
The next big program was taking the non-Abelian vortices to N = 1 supersymmetric

theories. InN = 2 theories, the world-sheet of the vortex exhibitsN = (2, 2) supersymme-
try together with a lot of other properties like the mentioned matching of the BPS-spectra
of the two theories. This turns out also to be the case for the vortex string in N = 1 theo-
ries which are obtained by adding a superpotential with masses for the adjoint field, giving
rise to the so-called heterotic strings, which were shown in Ref. [124] to have N = (0, 2)
supersymmetry. Soon after, several papers discussed the quantum properties, the relation
between the bulk and world-sheet theory for various values of the deformation parameters
as well as a large-N solution [125, 126, 127, 128].

Another direction is the non-Abelian vortex in the Higgs vacuum ofN = 1? theory with
the unitary gauge group SU(N), which is a mass deformation of the conformal N = 4
theory. It was studied for two colors in Ref. [129] and for larger N in Ref. [130] both in
the weakly coupled field theory and in the IIB string dual (i.e. in the Polchinski-Strassler
background [131]). The quantum phases of this theory has also been studied recently in
Ref. [132].

The questions about dynamical Abelianization were addressed in Ref. [133].
Another formalism for describing the full moduli space of non-Abelian vortices on Rie-

mann surfaces was given in Ref. [134], where the matrix describing the k vortices is factor-
ized.

For the reader which is not familiar with this literature, there are several comprehensive
reviews on the topic of non-Abelian vortices [135, 136, 137, 138].

Let us conclude this Section with mentioning the literature concerned with non-Abelian
Chern-Simons vortices. The first studies of non-Abelian Chern-Simons vortices are made
with a simple group, viz. SU(2) and SU(N) with fields in the adjoint representation [139,
140, 141] and later numerical solutions have been found [142]. In Refs. [143, 144] the
non-Abelian Chern-Simons vortices have been studied with a U(N) gauge group allowing
for orientational modes to be present and they identified the moduli space of a single vortex
solution. Furthermore, Refs. [145, 146, 147] have considered combining the Yang-Mills and
the non-Abelian Chern-Simons terms for U(N) gauge groups. In Ref. [145] the dynamics
of the vortices has been studied and in Ref. [146] in addition to the topological charge,
conserved Noether charges associated with a U(1)N−1 flavor symmetry of the theory due to
inclusion of a mass term for the squarks, were considered. In Ref. [147] numerical solutions
have been provided.

Many related topics can be found in the excellent reviews [148, 149].

0.5 How to read this Thesis?
The organization of this Thesis is as follows. The next Chapter will present all the tools

and concepts needed, developed and used in the rest of the Thesis, while the results of more
detailed nature are presented separately in subsequent Chapters. This Chapter includes the
results of the paper [6]. In Chap. 2, we will present the type III vortex solution in the Abelian
non-BPS Chern-Simons-Higgs model. In Chap. 3, a phase transition between Chern-Simons
type and ANO vortices in the limit of large magnetic flux is discussed. These two Chapters
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are based on the paper [7]. In Part III, we will first present a result on the quantization of
the non-Abelian flux of the vortices à la GNOW, in Chap. 4. Next, results on the moduli
space transition functions between various patches etc., of the local and semi-local SO(N)
and USp(2M) vortices are presented in Chaps. 5, 6. In Chap. 7, we will present an index
theorem providing the number of moduli in a generic non-Abelian vortex configuration of
the type U(1)×G′, with G′ being a simple group. The these four Chapters are based on the
big paper [3]. In Chap. 8, we will present the Kähler and hyper-Kähler quotient construction
in SO(2M) and USp(2M) theories and their corresponding lump solutions in Chap. 9.
These two Chapters are based on the paper [5]. In the paper [5], lumps of fractional nature
were discovered and this topic is discussed in more detail in Chap. 10, which is based on
the paper [2]. In Chap. 11, results on the non-Abelian Chern-Simons vortices with generic
gauge groups are presented. This Chapter is based on the paper [1]. Finally, in Chap. 12,
future directions are discussed.





CHAPTER 1

Setup and basics

In this Chapter we will go through all the key subjects of this Thesis, starting with
the introduction of N = 2 supersymmetry and its breaking to N = 1 to arrive at the
main model we will study (in Sec. 1.2), where we will explain the main ingredients in
the construction of non-Abelian vortices. In relation with the strong coupling limit, we
will introduce the machinery of Kähler quotients to obtain low-energy effective theories
of corresponding supersymmetric gauge theories. Then we will reduce the theory to an
Abelian theory and discuss non-BPS potentials and integrability. Finally, we will reduce the
number of dimensions to 2 + 1 and discuss Chern-Simons terms and their consequences.
This Chapter will give a brief account for all the topics discussed in this Thesis, while all
the results will be presented in the subsequent parts.

1.1 Supersymmetry

Let us start by introducing the main model that we will work with in different forms
through out this Thesis. Let us consider an N = 2 supersymmetric Yang-Mills (SYM)
theory (i.e. having eight supercharges) consisting of anN = 2 chiral multiplet in the adjoint
representation of the gauge group G along with NF hypermultiplets transforming under the
fundamental representation of the gauge group. Let us build up the theory step-by-step. A
manifestly invariantN = 2 supersymmetric theory can be written in terms of a holomorphic
prepotential. In our simple case of Yang-Mills we have the classical prepotential on the
following form

F (Ψ) =
τ

2
Ψ2 , τ =

θvac

2π
+

4πi

g2
, (1.1)

with θvac being the vacuum angle and g is the coupling constant of super-Yang-Mills while
the N = 2 chiral superfield Ψ is constructed of N = 1 superfields as follows1

Ψ = Φ(ỹ, θ) +
√

2θ̃αWα(ỹ, θ) + θ̃2G(ỹ, θ) , (1.2)

1We will use the standard notation of Wess and Bagger [150] when using superspace, however with the
gauge coupling rescaled in front of the gauge kinetic term.



18 Setup and basics

where θ̃ are N = 2 superspace (Grassmann) variables, ỹµ = yµ + iθ̃σµ ¯̃θ is the N = 2
variables while yµ = xµ + iθσµθ̄ are the N = 1 combined variables and the N = 1
superfields are

Φ = φ(y) +
√

2θψ(y) + θ2F (y) , (1.3)

V = −θσµθ̄Aµ(y) + iθ2θ̄λ̄(ȳ)− iθ̄2θλ(y) +
1

2
θ2θ̄2D(y) , (1.4)

Wα =
1

8
D̄2
(
e2VDαe−2V

)
, (1.5)

where Φ is an N = 1 chiral superfield, V is the vector superfield in Wess-Zumino gauge,
Wα is the super field strength and θ is the normal N = 1 superspace (Grassmann) variable.
The function G in Eq. (1.2) is defined as follows

G(ỹ, θ) =

∫
d2θ̄ Φ†

(
ỹ − iθσθ̄, θ, θ̄) e−2V (ỹ−iθσθ̄,θ,θ̄) . (1.6)

The Lagrangian density can now neatly be expressed as

L =
1

4π
Tr =

∫
d2θd2θ̃ F , (1.7)

which when integrated over θ̃ yields the gauge part of the N = 2 theory

LSYM = Tr =
[
τ

4π

(
1

2

∫
d2θ WαWα +

∫
d4θ Φ†e−2V Φ

)]
. (1.8)

Now we have just a pure supersymmetric gauge theory, and we see that it is simply the
correct combination of an N = 1 gauge multiplet together with an N = 1 chiral multiplet,
however we need still to add matter multiplets. These are N = 2 hypermultiplets and we
will add NF of them with the following superpotential dictated by N = 2 supersymmetry

W =
√

2 Tr Q̃ΦQ+

NF∑
i=1

miQ̃iQ
i , (1.9)

while their kinetic terms are given by the following Kähler potential

K = Tr
[
Q†e−2VQ+ Q̃e2V Q̃†

]
. (1.10)

The matter superfields Q are all in the fundamental representation while Q̃ are in the anti-
fundamental representation. The superfields Φ and V transform under the adjoint represen-
tation of the gauge group. The Lagrangian density for the hypermultiplets is

Lhyper =

∫
d4θ K +

∫
d2θ W +

∫
d2θ̄ W̄ . (1.11)

Finally, we can collect the pieces and write the Lagrangian for the theory

LN=2 = LSYM + Lhyper . (1.12)



1.1 Supersymmetry 19

We still have the possibility to add a Fayet-Iliopoulos (FI) term to the theory without
breaking N = 2 supersymmetry. Introducing a triplet of SU(2)R R-symmetry which is
present (and manifest in the N = 2 superspace notation)

1√
2

(F1 + iF2) ≡ F , F3 ≡ D , (1.13)

we can add the following term to the Lagrangian density

−
3∑
i=1

ξiFi , (1.14)

which clarifies the equivalence of introducing the FI parameter with a D-term or with an
F -term [151, 152, 153].

1.1.1 Breaking supersymmetry and generating an FI parameter
After having built up this neat non-Abelian N = 2 gauge theory, let us break it down,

at least to N = 1 supersymmetry. We can do it by adding a deformation of the form of an
N = 2 non-invariant superpotential

WN=1 = µ Tr Φ2 . (1.15)

Truncating the chiral superfield to linear order still renders the theoryN = 2 invariant, how-
ever keeping all the terms generally breaks N = 2. In the literature this is denoted a softly
broken N = 2 (down to N = 1) model. If we keep the linear order in the superpotential,
the term will act as an FI F -term parameter.

In general we will think of a symmetry breaking of the form

H
m−→ G

µm−→ 1 . (1.16)

There are a number of different non-Abelian vacua which are termed r-vacua [154, 155,
156], where r denotes the rank plus one of the unbroken gauge symmetry. Considering for
instance SU(N+1), we can choose the r = N vacuum by the following VEV of the adjoint
scalar

〈φ〉 = diag (m1N ,−Nm) . (1.17)

When µ 6= 0 this will induce the above mentioned FI F -term parameter ∝ µm with the
gauge symmetry breaking in this case

SU(N + 1)
m−→ U(1)× SU(N)

ZN

µm−→ 1 . (1.18)

This type of system is in particular interesting in the context of non-Abelian monopoles
which are attached to the non-Abelian vortex [103, 97]. In that case the first symmetry
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breaking gives rise to the non-Abelian monopoles and possesses topologically supported
stability via the second homotopy group

π2 (H/G) 6= 1 , (1.19)

while the vortices arise from the second breaking and are supported topologically by the
first homotopy group

π1 (G) 6= 1 . (1.20)

We have demonstrated this way of naturally generating our model from a simple gauge
group with a well-behaved theory at high energies, which at low energies has the U(1)
factor of crucial importance for constructing the vortices and it naturally has a symmetry
breaking potential. Now that we know that our model can naturally be embedded at higher
energies, we can forget about the high-energy theory with the associated monopoles, and
work directly with the low-energy theory with a D-term FI parameter (and not the F -term
type parameter like in the above described scenario).

1.1.2 Component fields
Now we are in shape to write down the Lagrangian in terms of bosonic component

fields, which will be the basis of our further analyses in this Thesis. As mentioned in the
last Section, we need to consider the complete breaking of the gauge symmetry to construct
the vortices. Thus we write the theory directly with gauge group G. The Lagrangian density
reads

L = Tr
[
− 1

2e2
FµνF

µν − 1

2g2
F̂µνF̂

µν +
2

e2
∂µφ (∂µφ)† +

2

g2
Dµφ̂

(
∂µφ̂

)†
+Dµq (Dµq)† + (Dµq̃)†Dµq̃

]
− VD − VF , (1.21)

where we have explicitly differentiated between the Abelian gauge symmetry which now has
the self coupling e while the non-Abelian gauge coupling is denoted by g. The generators
of the gauge group G/U(1) are all normalized as

Tr
(
tatb
)

=
1

2
δab , (1.22)

where the indices a, b are color indices and run from a = 1, . . . , dim(G) − 1. Also the
Abelian generator has the same normalization

t0 =
1N√
2N

. (1.23)

The field strength of Abelian and non-Abelian kind are defined as follows

Fµν ≡ F 0
µνt

0 , F 0
µν = ∂µA

0
ν − ∂νA0

µ , (1.24)

F̂µν ≡ F a
µνt

a = ∂µAν − ∂νAµ + i [Aµ, Aν ] , Aµ ≡ Aaµt
a , (1.25)
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whereas the adjoint scalar fields are defined as follows

φ ≡ φ0t0 , φ̂ ≡ φata . (1.26)

Finally, we have the fundamental squark fields q and their anti-fundamental counter parts q̃
which are written in matrix notation as q f

a with a being the color index while f is the flavor
index. The anti-fundamentals on the other hand are defined as q̃ a

f . The flavor indices run
over NF multiplets and are conveniently summed in the matrix product.

The potential receives contributions from the D-terms

VD =
g2

2
Tr
(
i

g2
fabc(φ†)bφc + qq†ta − q̃†q̃ta

)2

+
e2

2
Tr
(
qq†t0 − q̃†q̃t0)2

, (1.27)

while the F -terms give rise to

VF = 2g2Tr |qq̃ta|2 + 2e2Tr
∣∣qq̃t0 − ξ∣∣2 (1.28)

+ 2

NF∑
f=1

∣∣∣∣(φ+ φ̂+
1√
2
mf

)
qf
∣∣∣∣2 + 2

NF∑
f=1

∣∣∣∣(φ+ φ̂+
1√
2
mf

)
(q̃†)f

∣∣∣∣2 ,
where the FI (F -term) parameter is given by ξ = µm/

√
2.

At the classical level there is a unique vacuum in the case of G = U(N) theories,
however it is not quite so in general, for instance for G = U(1) × SO(N) or G = U(1) ×
USp(2M) theories. There is however a unique characteristic about the vacuum of the G =
U(N) theories, which is an unbroken global symmetry, which is a combination of the global
part of the color transformations and the flavor symmetry. That is, in the vacuum

〈q〉 = 〈q̃†〉 =

√
ξ

N
1N , 〈φ+ φ̂〉 = 0 , (1.29)

there exists the following global color-flavor symmetry

{
q, q̃†

}→ Uc
{
q, q̃†

}
U †f ,

{
φ, φ̂, Fµν , F̂µν

}
→ Uc

{
φ, φ̂, Fµν , F̂µν

}
U †c . (1.30)

All these fields are not really needed to construct the vortex solutions which will be
our main interest in this Thesis, so we will simplify the theory a bit by setting q̃ = q† and
φ = φ̂ = 0. This leads us to the main model that we will study. In the next Section we will
construct solutions explicitly and completely general, leaving the possibility for a generic
gauge group of the kind

G = U(1)×G′ , (1.31)

with G′ being a simple (non-Abelian) gauge group.
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1.2 Vortex construction and moduli matrix formalism
We focus our attention on the classical Lie groupsG′ = SU(N), SO(N) and USp(2M),

leaving the exceptional groups to a short discussion in Sec. 1.2.2. For G′ = SO(N),
USp(2M) their group elements are embedded into SU(N) (N = 2M for USp) by con-
straints of the form, UTJU = J , where J is the rank-2 invariant tensor

J =

(
0M 1M
ε1M 0M

)
, JSO(2M+1) =

0M 1M 0
1M 0M 0
0 0 1

 , (1.32)

where ε = +1 for SO(2M), while ε = −1 forUSp(2M); the second matrix is for SO(2M+
1).

The Lagrangian density reads

L = Tr
[
− 1

2e2
FµνF

µν − 1

2g2
F̂µνF̂

µν +DµH (DµH)†

− e2

4

∣∣∣∣X0t0 − ξ

N
1N

∣∣∣∣2 − g2

4
|Xata|2

]
, (1.33)

with the field strength, gauge fields and covariant derivative denoted as

Fµν = F 0
µνt

0 , F 0
µν = ∂µA

0
ν − ∂νA0

µ , (1.34)

F̂µν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , Aµ = Aaµt
a , (1.35)

Dµ = ∂µ + iA0
µt

0 + iAaµt
a . (1.36)

A0
µ is the gauge field associated with U(1) and Aaµ are the gauge fields of G′. The matter

scalar fields are written as an N × NF complex color (vertical) – flavor (horizontal) mixed
matrix H . It can be expanded as

X = HH† = X0t0 +Xata +Xαtα , (1.37)

X0 = 2 Tr
(
HH†t0

)
, (1.38)

Xa = 2 Tr
(
HH†ta

)
. (1.39)

e and g are the U(1) and G′ coupling constants, respectively, while ξ is a real constant. t0

and ta stand for the U(1) and G′ generators, respectively, and finally, tα ∈ g′⊥, where g′⊥ is
the orthogonal complement of the Lie algebra g′ in su(N).

We have derived this theory from ourN = 2 theory and thus this theory is automatically
at critical coupling – i.e. it is in the BPS limit. In order to keep the system in the Higgs
phase, we take ξ > 0. The model has a gauge symmetry acting from the left on H and a
flavor symmetry acting from the right. First we note that this theory has a continuous Higgs
vacuum which was discussed in detail in Ref. [5]. In this Thesis we choose mainly to work
in a particular point of the vacuum manifold

〈H〉 =

√
ξ

N
1N , (1.40)
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namely, in the maximally “color-flavor-locked” Higgs phase of the theory. We have set
NF = N which is the minimal number of flavors allowing for such a vacuum. The existence
of a continuous vacuum degeneracy implies the emergence of vortices of semi-local type as
we shall see later.

The static tension, assuming independence of x3 can be written as

T = Tr
∫

C

[
1

e2
F 2

12 +
1

g2
F̂ 2

12 +DiH (DiH)† +
e2

4

∣∣∣∣X0t0 − ξ

N
1N

∣∣∣∣2 +
g2

4
|Xata|2

]
.

(1.41)

Using the following useful identity

DiH (DiH)† = (D1 ± iD2)H [(D1 ± iD2)H]† ∓
(
F12 + F̂12

)
HH†

∓ iεij∂i
(
(DjH)H†

)
, (1.42)

and choosing the upper sign (by convention – which corresponds to studying vortices instead
of anti-vortices), we can perform the Bogomol’nyi completion and obtain the tension as

T =

∫
C

Tr
[

1

e2

∣∣∣∣F12 − e2

2

(
X0t0 − ξ

N
1N

)∣∣∣∣2 +
1

g2

∣∣∣∣F̂12 − g2

2
Xata

∣∣∣∣2 + 4
∣∣D̄H∣∣2

− ξ

N
F12 − iεij∂i

(
(DjH)H†

) ]
(1.43)

≥ − ξ√
2N

∫
C
F 0

12 ≥ 0 , (1.44)

where 2D̄ ≡ D1 + iD2 is used along with the standard complex coordinates z = x1 + ix2

and all fields are taken to be independent of x3. When the inequality is saturated (BPS
condition), the tension is simply

T = 2πξν, ν = − 1

2π
√

2N

∫
C
F 0

12 , (1.45)

where ν is the U(1) winding number of the vortex. This leads immediately to the BPS
equations for the vortex

D̄H = ∂̄H + iĀH = 0 , (1.46)

F 0
12 = e2

(
Tr
(
HH†t0

)− ξ√
2N

)
, (1.47)

F a
12 = g2 Tr

(
HH†ta

)
. (1.48)

The corresponding tension density for these solutions can be rewritten from the tension
functional (1.43) by using the BPS equation (1.46) as

E = −ξF 0
12 +

1

2
∂2
i Tr
(
HH†

)
, (1.49)
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which in turn can be rewritten by means of the second BPS equation (1.47) as

E = −ξF 0
12 +

1

e2

√
N

2
∂2
i F

0
12 . (1.50)

The first BPS equation (1.46) can be solved [29, 100, 136] by the Ansatz

H = S−1(z, z̄)H0(z) , Ā = −iS−1(z, z̄)∂̄S(z, z̄) , (1.51)

where S belongs to the complexification of the gauge group, S ∈ C∗ × G′C. H0(z), holo-
morphic in z, is called the moduli matrix [98, 99], which contains all moduli parameters of
the vortices as will be seen below.

A gauge invariant object can be constructed as Ω = SS†. It will, however, prove con-
venient to split this into the U(1) part and the G′ part, such that S = s S ′ and analogously
Ω = ωΩ′, ω = |s|2, Ω′ = S ′S ′†. In terms of ω the tension (1.45) can be rewritten as

T = 2πξν = 2ξ

∫
C
∂∂̄ logω , ν =

1

π

∫
C
∂∂̄ logω , (1.52)

and ν determines the asymptotic behavior of the Abelian field as

ω = ss† ∼ |z|2ν , for |z| → ∞ . (1.53)

The moduli matrix H0(z) is defined up to equivalence relations of the form

{H0, S} ∼ Ve V
′(z) {H0, S} , (1.54)

with the V -transformation taking part of the algebra g′

V ′(z)TJV ′(z) = J . (1.55)

We define Ω0 ≡ H0H
†
0 and obtain the following system of partial differential equations by

inserting the Ansatz (1.51) into the remaining BPS equations (1.47) and (1.48)

∂̄∂ logω = − e2

4N

(
1

ω
Tr
(

Ω0Ω′−1
)
− ξ
)
, (1.56)

∂̄
(

Ω′∂Ω′−1
)

=
g2

4ω

(
Ω0Ω′−1 − 1N

N
Tr
(

Ω0Ω′−1
))

, (1.57)

which are the master equations in the case of G′ = SU(N), while in the case of G′ =
SO(N) or G′ = USp(N = 2M) we have

∂̄∂ logω = − e2

4N

(
Tr
(

1

ω
Ω0Ω′−1

)
− ξ
)
, (1.58)

∂̄
(

Ω′∂Ω′−1
)

=
g2

8ω

(
Ω0Ω′−1 − J†

(
Ω0Ω′−1

)T

J

)
. (1.59)
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The boundary conditions at |z| → ∞ are

1

ω
Tr
(
Ω0Ω′−1

)
= ξ , Ω0Ω′−1

= J†
(

Ω0Ω′−1
)T

J . (1.60)

We assume the existence and uniqueness for the solutions to these equations. There are at
least two justifications for this. One is the fact that in the strong coupling limit (e, g → ∞)
these can be algebraically and uniquely solved, which we will pursue in depth in Chap. 8.
The other relies on the index theorem: the number of the moduli parameters encoded in H0

coincides with that obtained from the index theorem [3] as we will show in Chap. 7.
The vortex solutions are characterized by a rational number ν > 0, being the U(1)

winding number. ν will be found to be quantized in half-integers (ν = k/2) for the groups
G′ = SO(2M), USp(2M) with k ∈ Z+; ν = k (integers) for G′ = SO(2M + 1); finally
ν = k/N for G′ = SU(N), as well known. The integer k denotes the vortex number: k = 1
corresponds to the minimal vortex in all cases.

The key idea which enables us to extend the moduli-matrix formalism to general gauge
groups, is to consider the holomorphic invariants I iG′(H) made of H , which are invariant
under G′C, with i labeling them. If the U(1) charge of the i-th invariant I iG′(H) is ni, the
following relation

I iG′(H) = I iG′
(
s−1S ′−1

H0

)
= s−niI iG′ (H0(z)) , (1.61)

holds. If the boundary condition is given by

I iG′(H)
∣∣∣
|z|→∞

= I ivev e
iνniθ , (1.62)

where ν ni is the number of zeros of I iG′ , it follows that

I iG′(H0) = sniI iG′(H) ∼ I ivev z
ν ni , |z| → ∞ . (1.63)

As I iG′(H0(z)) are holomorphic, the above condition implies that I iG′(H0(z)) are polynomi-
als in z. We find that ν ni must be a positive integer for all i:

ν ni ∈ Z+ ⇒ ν =
k

n0

, k ∈ Z+ , (1.64)

where (gcd denotes the greatest common divisor)

n0 ≡ gcd
{
ni | I ivev 6= 0

}
. (1.65)

Note that a U(1) gauge transformation e
2πi
n0 leaves invariant I iG′(H):

I iG′(H
′) = e

2πini
n0 I iG′(H) = I iG′(H) , (1.66)

i.e. the phase rotation e
2πi
n0 ∈ Zn0 changes no physics, and the true gauge group is thus

G =
U(1)×G′

Zn0

. (1.67)
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where Zn0 is the center of G′. A simple homotopy argument tells us that 1/n0 is the U(1)
winding for the minimal (k = 1) vortex configuration. Finally, for a given k the following
important relation holds

I iG′(H0) = I ivevz
kni
n0 +O

(
z
kni
n0
−1
)
, (1.68)

which implies non-trivial constraints on H0(z).
The explicit form of the constraints follows from this general discussion. For G′ =

SU(N) (with N flavors), there exists only one invariant

ISU = det(H) , (1.69)

with charge N . Thus the minimal winding (1/n0) is equal to 1/N and the condition for k
vortices is given by:

AN−1 : detH0(z) = zk +O (zk−1
)
, ν =

k

N
. (1.70)

For G′ = SO(N), USp(2M), there are N(N ± 1)/2 invariants

(ISO,USp)
r
s = (HTJH)rs , 1 ≤ r ≤ s ≤ N , (1.71)

in addition to Eq. (1.69). The constraints are:

CM , DM : HT
0 (z)JH0(z) = zkJ +O (zk−1

)
, ν =

k

2
,

BM : HT
0 (z)JH0(z) = z2kJ +O (z2k−1

)
, ν = k , (1.72)

for G′ = SO(2M), USp(2M) and SO(2M + 1), respectively. As anticipated, vortices in
the SO(2M + 1) model have integer U(1) windings [118].

Explicitly, the minimal vortices for G′ = SU(N) is given by the following moduli
matrix

H0(z) =

(
z − a 0
~bT 1N−1

)
, (1.73)

while in the case of G′ = SO(2M) or G′ = USp(2M) theories are given respectively by
the moduli matrices

H0(z) =

(
z1M −A CS/A

BA/S 1M

)
. (1.74)

The moduli parameters are all complex. For SU(N), a is just a number;~bT is a column vec-
tor. For SO(2M) or USp(2M), the matrix CS/A for instance is symmetric or antisymmetric,
respectively. And vice versa for B.

The index theorem gives the complex dimension of the moduli space

dimC (MG′,k) =
kNNF

n0

. (1.75)
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This was obtained in Ref. [9] for SU(N); a general proof in the case of generic gauge groups
is given in Chap. 7.

Except for the SU(N) case, our model has a non-trivial Higgs branch (flat directions).
The color-flavor locked vacuum 〈H〉 ∝ 1N is just one of the possible (albeit the most
symmetric) choices for the vacuum; our discussion can readily be generalized to a generic
vacuum on the Higgs branch. This fact, however, implies that our non-Abelian vortices have
“semi-local” moduli (see Achucarro et. al. [85, 15]), even for NF = N .

1.2.1 Local vortices
For various considerations, we are interested in knowing which of the moduli parame-

ters describe the so-called local vortices, the ANO-type vortices with exponential tails. To
identify these, let us first consider generic points in the moduli space. In the strong coupling
limit, our theory reduces to a NLσM, with the (classical) vacuum moduliMvac as its target
space. In such a limit, semi-local vortices with non-zero size moduli reduce to the so-called
σ model lumps. The local vortices on the other hand shrink to singular configurations. It
is well-known that lumps are characterized by π2(Mvac) with a wrapping around a 2-cycle
insideMvac. Even at finite gauge coupling, asymptotic configurations of semi-local vortices
can be well approximated by lumps.

Now the moduli space of vacua Mvac in supersymmetric models is parametrized by
holomorphic invariants IIG(H) (I = 1, 2, . . .) of the complexified gauge group GC [157]. In
our case, G = G′ × U(1), with the common U(1) charge of the scalar fields H , all the GC

invariants IIG(H) can be written using the G′C invariants I iG′(H). For instance from I iG′ and
IjG′ with ni = nj , one can construct

I
(i,j)
G (H) ≡ I iG′(H)

IjG′(H)
=
I iG′(H0(z))

IjG′(H0(z))
, (1.76)

where use was made of Eq. (1.61). The last line defines, so-called, (generalized) rational
maps. This observation allows us to define local vortices. While the asymptotic region of
semi-local vortices is mapped to some domain of Mvac, that around the local vortices is
mapped into a single point. Therefore, all the GC invariants IIG(H) must be constant for
the latter. All the IG′(H)’s have zeros at the vortex positions and winding around them as
seen in Eq. (1.62). These facts, together with Eq. (1.76), imply that all I iG′(H0(z))’s with
the same ni must have common zeros

I iG′ (H0,local) =

[
k∏
`=1

(z − z0`)

] ni
n0

I ivev . (1.77)

For G′ = SO(2M), USp(2M) with ISO,USp of Eq. (1.71) we find that the condition for
vortices to be of local type is

HT
0,local(z)JH0,local(z) =

k∏
`=1

(z − z0`) J . (1.78)
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Let us now discuss a few concrete examples. The general solution for the minimal vortex
(1.74) with G′ = SU(N) is reduced to a local vortex if we restrict it to be of the form

H0,local(z) =

(
z − a 0
~bT 1N−1

)
, (1.79)

while for G′ = {SO(2M), USp(2M)} we have

H0,local(z) =

(
(z − a) 1M 0

BA/S 1M

)
. (1.80)

The vortex position is given by a. ~bT in the case of SU(N) and BA/S in the case of SO(2M)
or USp(2M) encode the Nambu-Goldstone modes associated with the breaking of the color-
flavor symmetry by the vortex G′C+F → KG′ . The moduli spaces are direct products of a
complex number and the Hermitian symmetric spaces

Mlocal
G′,k=1 ' C× G′C+F

KG′
, (1.81)

KSU(N) = SU(N − 1) × U(1) while KSO(2M),USp(2M) = U(M). The moduli space in the
case of G′ = SU(N) thus reads

Mlocal
SU(N),k=1 = C× SU(N)

SU(N − 1)× U(1)
' C× CPN−1 , (1.82)

while in the case of G′ = SO(2M) and G′ = USp(2M) we have

Mlocal
SO(2M),k=1 = C× SO(2M)

U(M)
, Mlocal

USp(2M),k=1 = C× USp(2M)

U(M)
. (1.83)

These results for SU(N) and SO(2M) are well-known [9, 97, 118].
The matrices (1.80) describe just one patch of the moduli space. In order to define the

manifold globally we need a sufficient number of patches. The number of patches is N for
G′ = SU(N) and 2M for G′ = SO(2M), USp(2M). The transition functions correspond
to the V -equivalence relations [100, 111, 136]. In the case of G′ = SO(2M), the patches
are given by permutation of the i-th and the (M + i)-th columns in (1.80). We find that
no regular transition functions connect the odd and even permutations (patches), hence the
moduli space consists of two disconnected copies of SO(2M)/U(M) [118]. The complex
dimensions of the moduli spaces are

dimCMlocal
SO(2M),k=1 =

1

2
M(M − 1) + 1 , (1.84)

dimCMlocal
USp(2M),k=1 =

1

2
M(M + 1) + 1 . (1.85)



1.2 Vortex construction and moduli matrix formalism 29

G′ AN−1 BM CM , DM E6 E7 E8 F4 G2

R N 2M + 1 2M 27 56 248 26 7
rank inv − 2 2 3 2, 4 2, 3, 8 2, 3 2, 3
n0 N 1 2 3 2 1 1 1

Table 1.1: The dimension of the fundamental representation (R), the rank of the other invariants
[10] and the minimal tension ν = 1/n0 i.e. the center Zn0 of G′. The determinant of the R × R
matrix gives one invariant with charge, dimR.

1.2.2 Exceptional groups

E6 : There is a rank-3 symmetric tensor: Γijk. The conditions on the moduli matrix are

Γi1i2i3(H0)i1j1(H0)i2j2(H0)i3j3 ∼ Γj1j2j3z
k , (1.86)

and the U(1) winding number is quantized as ν = k/3.
E7 : There are 2 invariant tensors: dijkl and fij respectively of rank 4 and 2. The moduli

matrix is constrained as:

di1i2i3i4(H0)i1j1(H0)i2j2(H0)i3j3(H0)i4j4 ∼ dj1j2j3j4z
2k ,

fi1i2(H0)i1j1(H0)i2j2 ∼ fj1j2z
k, (1.87)

and the vortices are quantized in half integers: ν = k/2.
G2, F 4, E8 : See Table 1.1 for the list of the invariant tensors and the winding numbers.

1.2.3 Strong coupling limit

If we now consider taking the strong gauge coupling limit, the master equations in the
case of G′ = SU(N), Eqs. (1.56) and (1.57) reduce to the algebraic matrix equations

0 =
1

ω
Tr
(

Ω0Ω′−1
)
− ξ , (1.88)

0 = Ω0Ω′−1 − 1N
N

Tr
(

Ω0Ω′−1
)
, (1.89)

which have the solution (that also coincides with the boundary conditions)

ω∞ =
N

ξ
(det Ω0)

1
N , Ω′∞ = (det Ω0)−

1
N Ω0 , Ω∞ = ω∞Ω′∞ , (1.90)

while in the case G′ = SO(N) or G′ = USp(2M) we have

0 =
1

ω
Tr
(

Ω0Ω′−1
)
− ξ , (1.91)

0 = Ω0Ω′−1 − J†
(

Ω0Ω′−1
)T

J , (1.92)
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which in turn have the solution

ω∞ =
1

ξ
Tr
√
M †M ,

Ω′∞ = H0(z)
1N√
M †M

H†0(z) , Ω∞ = ω∞Ω′∞ , (1.93)

where

M ≡ HT
0 (z)JH0(z) , (1.94)

is the meson field.
This limit corresponds to considering the low-energy effective theory where the mass of

the gauge bosons is infinitely heavy and it can be physically justified to integrate them out,
for instance in the path integral formalism. In this limit, the gauge theory becomes a NLσM
and the vortices become so-called NLσM lumps or simply lumps.

A useful technology to find exactly these low-energy effective solutions is the Kähler
quotient or for N = 2 supersymmetric theories, the hyper-Kähler quotient. The underlying
reason for this is the fact that the Higgs branch of N = 2 (N = 1) supersymmetric QCD is
hyper-Kähler (Kähler). We will briefly introduce this formalism in the next Section.

1.3 Kähler quotient
Let us first give a brief review on the SU(N) Kähler quotient. We start with theN = 1,

SU(N) supersymmetric Yang-Mills theory with NF chiral superfields Q (i.e. an N -by-NF

matrix) in the fundamental representation of SU(N). Denote the SU(N) vector multiplet
by a superfield V ′, then a Kähler potential for the system is

KSU(N) = Tr
[
QQ†e−V

′
]
. (1.95)

The Lagrangian is invariant under the complexification of the gauge group,

SU(N)C = SL(N,C) ,

given by

Q→ eiΛ
′
Q , eV

′ → eiΛ
′
eV
′
e−iΛ

′†
, eiΛ

′ ∈ SU(N)C . (1.96)

while we will not consider any superpotentials here.
As well-known, the kinetic term of the vector supermultiplet

1

4g2

∫
d2θ WαWα +

1

4g2

∫
d2θ̄ W̄α̇W̄

α̇ , (1.97)

includes a so-called D-term potential in the Wess-Zumino gauge, in which SU(N)C is fixed
to SU(N)

VD =
g2

2

(
DA
)2
, DA = TrF

(
Q†wzt

AQwz

)
, (1.98)
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where tA are SU(N) generators andQwz denotesQ in the Wess-Zumino gauge. The vacuum
condition DA = 0 (D-flatness) allows both for an unbroken phase and for the Higgs phase.
It implies that QwzQ

†
wz ∝ 1N holds in the vacuum. On the Higgs branch (rankQwz = N ),

the gauge fields acquire masses of the order g 〈Q〉 by the Higgs mechanism. If we restrict
ourselves to energies much below the mass scale, we can omit the massive gauge fields. In
order to get a low-energy effective theory, it will prove useful to consider a limit where the
gauge coupling is taken to infinity: g → ∞. In this limit, the vector multiplet becomes
infinitely massive and looses the kinetic term. Thus, it reduces to merely an auxiliary field.
At the same time the D-term potential forces Qwz to take a value in the vacuum DA = 0.
Thus the low-energy effective theory is a NLσM, whose target space is the vacuum of the
gauge theory

MSU(N) =
{
Qwz | QwzQ

†
wz ∝ 1N , rankQwz = N

}
/SU(N) . (1.99)

The real dimension of the manifold is

2NNF − (N2 − 1)− (N2 − 1) = 2N(NF −N) + 2 .

Before fixing the complexified gauge symmetry SU(N)C, for instance by choosing the
Wess-Zumino gauge as above, we can take the strong coupling limit immediately. This gives
another description of the NLσM. The Lagrangian consists of only one term i.e. Eq. (1.95)
and we do not have the D-term conditions anymore, however, instead we have the complex
fields Q and the complexified gauge group SU(N)C. The target space is expressed by

MSU(N) = {Q | rankQ = N}//SU(N)C . (1.100)

In order for this quotient to be well-defined, the action of SU(N)C must be free on Q.
Namely, the gauge symmetry should be completely broken, thus we are going to study the
full Higgs phase. The complex dimension of the manifold is

NNF − (N2 − 1) = N(NF −N) + 1 ,

which coincides with the dimension of (1.99). The two expressions (1.99) and (1.100) of
the target space are in fact identical. One can find a relation between them by solving the
equations of motion for V ′. It determines the traceless part as QQ†e−V ′ ∝ 1N . Taking
TrV ′ = 0 into account, V ′ is uniquely determined as

V ′ = logQQ† − 1

N
1N log det(QQ†) , (1.101)

if and only if rankQ is maximal, which corresponds to the full Higgs phase. Now we can
find an explicit map from the quotient (1.100) to the vacuum configuration (1.99):

Qwz = e−V
′/2Q =

[
det(QQ†)

] 1
2N

1√
QQ†

Q . (1.102)

There is still another way to express the same NLσM. As explained above, the target
space is nothing but the classical moduli space of vacua of the original supersymmetric
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gauge theory. As discussed in Ref. [157] it can be described by holomorphic invariants
of the complexified gauge group. Hence, the Kähler potential on the NLσM should be
expressed in terms of such holomorphic invariants. The holomorphic invariants of SU(N)C

are the baryon operators

B〈A1···AN 〉 ≡ detQ〈A1···AN 〉 = εi1···iNQi1
A1 · · ·QiN

AN , (1.103)

where Q〈A1···AN 〉 denotes an N -by-N minor matrix of the N -by-NF matrix Q as (Q〈A〉)ji =
Qi

Aj . We often abbreviate the label 〈A1 · · ·AN〉 as 〈A〉. The important point is that all the
B〈A〉’s are not independent and they satisfy the so-called Plücker relations

B〈A1···AN−1[B1〉B〈B2···BN+1]〉 = 0 . (1.104)

Furthermore, the condition for having the full Higgs phase requires that at least one of the
B〈A〉’s must take a non-zero value. Actually, we can reconstruct Q modulo SU(N) gauge
symmetry by solving the Plücker relations with one non-zeroB〈A〉 as the starting point. That
is, the holomorphic invariants with the Plücker relations give us the same information as the
two descriptions above. Hence, the target space is also expressed as

MSU(N) =
{
B〈A〉 | Eq. (1.104)

}− {B〈A〉 = 0 ,∀〈A〉} . (1.105)

Let us show the metric on the target space. It can be derived from the Kähler potential
(1.95) and is represented by

KSU(N) = N
[
det(QQ†)

] 1
N = N

∑
〈A〉

∣∣B〈A〉∣∣2
 1

N

. (1.106)

The appearance of the N th root reflects the fact that the U(1) charge of the invariants is N ,
as we will see soon. Notice that the (partial) Coulomb phase (det(QQ†) = 0) shrinks to
a point of the target manifold from the point of view of the NLσM and a trace of this fact
is seen as the ZN conifold singularity at that point. In the simple case with NF = N , one
can find the NLσM on an orbifold C/ZN . At the singularity, the vector multiplet becomes
massless and the gauge symmetry is restored. We have to take all the massless fields into
account there, namely we cannot restrict ourselves to the NLσM, but we have to return to
the original gauge theory.

This singularity (that is, the Coulomb phase) is removed once the overall U(1) phase is
gauged and the so-called Fayet-Iliopoulos (FI) parameter ξ (> 0) [158] is introduced for
that U(1). Let us consider a U(1)×SU(N) gauge theory. Still we neglect the kinetic terms
associated with the vector multiplet, such that the vector multiplet is an auxiliary superfield.
The Kähler potential is given by

KU(1)×SU(N) = Tr
[
QQ†e−Vee−V

′
]

+ ξVe = e−VeKSU(N) + ξVe , (1.107)

where Ve is a U(1) vector supermultiplet and the chiral fields Q have U(1) charge +1. The
D-flatness condition for the overall U(1) implies that

QwzQ
†
wz =

ξ

N
1N . (1.108)
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The target space of the NLσM becomes a compact space; the complex Grassmannian mani-
fold2

MU(1)×SU(N) = GrNF,N ' SU(NF)/[SU(NF −N)× SU(N)× U(1)] . (1.109)

As in the case above, we have three different representations

MU(1)×SU(N) =

{
Qwz

∣∣∣ QwzQ
†
wz =

ξ

N
1N

}/
(U(1)× SU(N))

= {Q | rankQ = N} //(U(1)× SU(N))C

=
({
B〈A〉 | Eq. (1.104)

}− {B〈A〉 = 0 ,∀〈A〉}) //U(1)C . (1.110)

A relation between Qwz and Q is also found here by solving the equations of motion with
respect to V ′ and Ve. The solution for V ′ is the same as Eq. (1.101) and the U(1) part is then
written as

Ve = log
(
ξ−1KSU(N)

)
. (1.111)

Then the map from the quotient space to the vacuum configuration is given by

Qwz = e−V
′/2−Ve/2Q =

√
ξ

N

1√
QQ†

Q . (1.112)

The third expression in Eq. (1.110) shows the Plücker embedding of the Grassmannian space
into a bigger space, the complex projective space CP n with n = NF!

N !(NF−N)!
− 1. The Kähler

potential can now be expressed by

KU(1)×SU(N) =
ξ

N
log det

(
QQ†

)
=

ξ

N
log

(∑
〈A〉

∣∣B〈A〉∣∣2) . (1.113)

The 1/N factor in front is the (inverse) U(1) charge of the invariant B〈A〉. The FI parameter
plays an important role: it forces the gauge symmetry U(1) × SU(N) to be fully broken,
namely it hides the singularity at the origin, where the gauge symmetry is recovered.

The Grassmannian manifold is one of the Hermitian symmetric spaces. NLσMs on all
Hermitian symmetric spaces can be obtained by imposing proper holomorphic constraints
from F -terms, by which Hermitian symmetric spaces are embedded into CPNF−1 or the
Grassmannian manifold [160].

1.3.1 Hyper-Kähler quotient
One can easily extend the above Kähler quotient to the hyper-Kähler quotient by consid-

ering a natural N = 2 supersymmetric extension. Here we will review the U(1) × SU(N)
case only. The Kähler potential and the superpotential are given by

K̃U(1)×SU(N) = Tr
[
QQ†e−Vee−V

′
+ Q̃†Q̃eVeeV

′
]

+ ξVe , (1.114)

W = Tr
[
QQ̃Σ

]
, (1.115)

2 The U(N) Kähler quotient construction of the Grassmann manifold was first found in Ref. [159] in the
superfield formalism.
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respectively, where we have introduced NF hypermultiplets (Q, Q̃†) in the fundamental
representation of U(N) ' U(1) × SU(N) and U(N) vector superfields (V,Σ) = (V ′ +
Ve1N ,Σ). The complexified gauge transformation is given by

Q→ eiΛQ , Q̃→ Q̃e−iΛ , eV → eiΛeV e−iΛ
†
, Σ→ eiΛΣe−iΛ , (1.116)

where Λ ∈ GL(N,C). The target space of the corresponding NLσM is a hyper-Kähler
manifold, namely the cotangent bundle T ?GrNF,N over the complex Grassmannian manifold
GrNF,N , endowed with the Lindström-Roček metric [56]. Let us obtain the Kähler potential
with respect to Q, Q̃ without choosing the Wess-Zumino gauge. The equations of motion
for Σ and V are

QQ̃ = 0 , (1.117)

−QQ†e−V + eV Q̃†Q̃+
ξ

N
1N = 0 . (1.118)

The first equation implies that Q̃ is orthogonal to Q. The rank of Q must be N due to
the positive FI parameter ξ, while Q̃ can be zero. Therefore Q (Q̃ = 0) parametrizes the
base space GrNF,N with the total space being the cotangent bundle over it. Let us count the
complex dimensions of the target space:

NNF +NFN −N2 −N2 = 2N(NF −N) ,

where the first subtraction is the U(N)C quotient and the second is the number of condi-
tions given in Eq. (1.117). In order to solve the second matrix equation, we first multiply
by
√
QQ†e−V from the left and by

√
QQ† from the right,3 such that the matrix equation

becomes Hermitian

X2 − ξ

N
X −

√
QQ†Q̃†Q̃

√
QQ† = 0 , X ≡

√
QQ†e−V

√
QQ† . (1.119)

Therefore, using detQQ† 6= 0, we find the solution

V = − log

[
1√
QQ†

X
1√
QQ†

]
,

with X =
ξ

2N
1N +

√√
QQ†Q̃†Q̃

√
QQ† +

ξ2

4N2
1N . (1.120)

We will now switch to another description i.e. using holomorphic invariants. We have
the following invariants of the SU(N)C gauge group

B〈A〉 = detQ〈A〉 , M = Q̃Q ,
(
B̃〈A〉 = det Q̃〈A〉

)
. (1.121)

In addition to the Plücker relations for the B〈A〉’s, there are constraints on the mesonic
invariant M

MB
[A1B〈A2···AN+1]〉 = 0 , B〈A1···AN−1A

′〉MA′
B = 0 . (1.122)

3 Note that the square root and the logarithm are uniquely defined for positive (semi-)definite Hermitian
matrices. This point might be missed (at least in this context) in the physics literature so far.
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Furthermore, B〈A〉 (and B̃〈A〉) are only defined up to U(1)C equivalence transformations.
After reconstructing Q from (some) non-vanishing B〈A〉, we can reconstruct Q̃ from the
first condition and find the constraint QQ̃ = 0 from the second. Therefore, these invariants
and their constraints describe the same target space, T ?GrNF,N . Plugging back the solution
(1.120) into the Kähler potential (1.114), we obtain the Kähler potential in terms of these
invariants [56, 58]

K̃U(1)×SU(N) = KU(1)×SU(N) (1.123)

+
ξ

N
TrF

[√
1NF

+
4N2

ξ2
MM † − log

(
1NF

+

√
1NF

+
4N2

ξ2
MM †

)]
.

We have used A†A = MM † and the cyclic property of a trace, i.e. for A =
√
QQ†Q̃†

Tr
[
f(AA†)− f(0N)1N

]
= Tr

[
f(A†A)− f(0NF

)1NF

]
. (1.124)

This relation can easily be proven by expanding the function f around AA† = 0N . Re-
call that the logarithm and the square root of a positive (semi-)definite Hermitian matrix
can be calculated by diagonalization and therefore the cyclic property works not only for
polynomial functions but for any function f(x).

The hyper-Kähler quotient construction of the cotangent bundle over the Grassmann
manifold has been reviewed here. For N = 1, the U(1) hyper-Kähler quotient reduces to
the cotangent bundle over the complex projective space, T ?CPNF−1 [53, 54, 55], endowed
with the Calabi metric [59]. The explicit Kähler potentials of the cotangent bundles over the
other Hermitian symmetric spaces have recently been obtained by a rather different method
[161, 162, 163, 164, 165, 166]. It is an open question if these manifolds can be obtained as
a certain hyper-Kähler quotient.

We will not repeat the derivation of the SU(N) hyper-Kähler quotient here. Explicit
expressions can be found in the literature, see for instance [58, 167, 168]. It gives the
cotangent bundle over the SU(N) Kähler quotient derived in the last Subsection.

1.4 Abelian vortices, BPS-ness and integrability

After a tour in the non-Abelian vortices, we will now simplify them to Abelian ones,
just for completeness and because we will need them in some cases, for instance to create
the wall vortices in the next Section.

Let us take a pedestrian route to find exactly the same equations as in the last Sections
with a much more elaborate machinery and this way see how supersymmetry minimizes the
tension and in turn cancels the inter-static forces between multi-vortices. Hence, we will
take the Lagrangian (1.33) and keep only the Abelian part

L = − 1

4e2
FµνF

µν +DµH (DµH)† − βe2

4

(
HH† − ξ)2

, (1.125)
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where our squark field is now just a single complex scalar (as opposed to a matrix) and we
have inserted a parameter β as a prefactor of the potential and4

Dµ = ∂µ +
i√
2
Aµ . (1.126)

This is the Abelian Higgs model which possesses the celebrated Abrikosov-Nielsen-Olesen
vortices [11, 12]. The equations of motion are

DµDµH +
βe2

2

(|H|2 − ξ)H = 0 , (1.127)

1

e2
∂µF

µν − i√
2

(
H†DνH −H (DνH)†

)
= 0 . (1.128)

Writing the static tension and assuming independence of x3 we have

T =

∫
C

[
1

2e2
F 2

12 + |DiH|2 +
βe2

4

(|H|2 − ξ)2
]
, (1.129)

where i = 1, 2 is summed over and we rewrite this tension using the following identity

|DiH|2 = |(D1 ± iD2)H|2 ∓ 1√
2
F12 |H|2 ∓ iεij∂i

(
(DjH)H†

)
, (1.130)

to obtain

T =

∫
C

[
1

2e2

(
F12 ∓

√
β

2
e2
(|H|2 − ξ))2

+ |(D1 ± iD2)H|2 ±
√
β − 1√

2
F12 |H|2

∓
√
β

2
ξF12 ∓ iεij∂i

(
(DjH)H†

) ]
. (1.131)

Now it is evident that something magical happens for β = 1, as the third term in the tension
vanishes and the tension can become proportional to the integral over the magnetic flux,
which is the topological charge of the vortex (the last term is just a boundary term, which
is not important for finite-energy solutions in an infinite space-time configuration). β = 1
is the BPS limit which we already had found in the supersymmetric settings automatically,
since it in fact corresponds to unbroken supersymmetry. In some later Chapters we will
consider also non-BPS solutions which correspond in this simple model to β 6= 1. Choosing
one of the signs corresponds to vortices and the other to anti-vortices (notice that the tension
is never negative, but the flux can be so), and by convention we choose the upper sign to be
vortices. The famous BPS equations are obtained simply by equating the first two squares
of the above tension with zero

F12 − e2

√
2

(|H|2 − ξ) = 0 , (1.132)

D̄H = 0 , (1.133)

4Remember that we always normalize the generators to have Tr(t2) = 1
2 .
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where D̄ ≡ (D1 + iD2)/2. This gives the tension formula (by neglecting the boundary
terms)

TBPS = − ξ√
2

∫
C
F12 . (1.134)

Normally, the vortices (BPS and non-BPS) are solved by choosing a radial Ansatz as

H =
√
ξh(r)eikθ ,

Aθ = −
√

2k

r
a(r) , (1.135)

with k being the winding number. This leads to the BPS-equations

∂ra

r
+
ξe2

2k

(
h2 − 1

)
= 0 , (1.136)

∂rh− k

r
(1− a)h = 0 , (1.137)

To find the vortex solutions (for each k), the following boundary conditions should be im-
posed

r → 0 : a ∝ r2 , h ∝ rk , (1.138)
r →∞ : a→ 1 , h→ 1 . (1.139)

Inserting the Ansatz (1.135) into the tension formula (1.134) we obtain once again the al-
ready derived formula for the tension proportional simply to the topological charge

TBPS = 2πξk . (1.140)

The two BPS equations (1.136), (1.137) can be combined to give

∇2 log h− ξe2

2

(
h2 − 1

)
= 0 , (1.141)

Notice the independence of k in the equation. This is in a radially symmetric Ansatz, so we
easily see that Eq. (1.58) is exactly the same provided we take N = 1, Ω′ = 1, Ω0 = r2k and
finally ω−1 = ξ

r2k
h2. The factor ξe2 is the mass-squared parameter of the system. Setting

the mass squared equal to two and substituting h2 → e−ψ we obtain the well-known Taubes
equation

∇2ψ = 1− e−ψ . (1.142)

This equation is not integrable. Taking a limit which puts the theory on the Coulomb branch,
by sending

√
ξ → 0 while keeping H constant, we obtain the Liouvilles equation

∇2ψ = −e−ψ . (1.143)

This equation has nothing to do with our vortex system, but it is integrable. The interest-
ing point is that it has been found in the literature that the Abelian vortex, not on a plane
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(like here), but on a hyperbolic background geometry does indeed have the above equation
of motion [169]. Recently, non-Abelian vortex moduli spaces have also been calculated
analytically on this kind of background which provides powerful calculability [170].

Now if we take β 6= 1, we need to use the full equations of motion (1.127), (1.128) to
which we apply the Ansatz (1.135) and obtain

∂2
rh+

1

r
∂rh− k2

r2
(1− a)2 h− βξe2

2

(
h2 − 1

)
h = 0 , (1.144)

∂2
ra−

1

r
∂ra− ξe2 (a− 1)h2 = 0 . (1.145)

From this system it is easy to read off the masses (around the Higgs vacuum 〈h〉 = 〈a〉 = 1)
by making a perturbation which yields the following asymptotic functions

1− h ∼ e−mhr , 1− a ∼ e−mar , (1.146)

where

mh =
√
βξe , ma =

√
ξe , (1.147)

which also reveals the already mentioned meaning of the parameter β

β =
m2
h

m2
a

. (1.148)

As the force associated with the scalar field is of an attractive nature while the force due to
the magnetic field, that is the photon, makes up a pressure – a repulsive force, then we can
understand very clearly what happens at critical coupling. Namely, something that happens
very often in supersymmetric theories, the forces cancel at the critical coupling β = 1 and
the vortices are BPS.

1.4.1 The wall vortex
In Refs. [171, 172] it was conjectured that the ANO vortex for large winding numbers

which is equivalent to large magnetic flux, can be thought of as a domain wall between the
Coulomb phase and the Higgs phase wrapped around the Coulomb phase. In Ref. [173] this
conjecture was proven to hold by numerical methods. The renormalizable potential needed
in four dimensional spacetime to break the U(1) gauge symmetry is of the form shown in
Fig. 1.1. The idea is simply balancing up the forces, the scalar field has a contractive force
while the magnetic field and the energy density act as a pressure on the wrapped-up wall.
We will now derive this vortex assuming that the scalar field vanishes inside the wall vortex
and thus the magnetic field attains its maximal value in all the interior region. The physical
intuition can be obtained from looking at the asymptotic expansions at the origin of the
vortex and at infinity. Considering first the origin, we can see from Eq. (1.138) that in the
limit of k →∞ the functions would presumably have the form

h ∼ 0 , a ∼ r2 , (1.149)
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|h|

ε0

√
ξ

V

Figure 1.1: Potential for the Higgs field h which has an unstable Coulomb (symmetric) phase at
h = 0 and a stable Higgs (asymmetric) phase at |h| = √ξ.

while if we look at Eq. (1.146) we have to consider the scales of the problem. The masses
are fixed in the limit of k → ∞, but the vortex radius grows: RV ∝ kα, where α is
some power depending on the potential. This we will show shortly. Hence if we normalize
the length scale by the vortex length, the exponentials vanish. Thus, the conjecture of the
Refs. [171, 172] is that in the large magnetic flux limit k →∞, the profile functions become

h ∼
{

0 , r < RV ,
1 , r > RV ,

a ∼
{ (

r
RV

)2

, r < RV ,

1 , r > RV .
(1.150)

First we consider the case that the potential is non-vanishing when the scalar field van-
ishes, which gives a tension contribution from the Coulomb phase. The maximal value of
the magnetic field can be calculated to be − ξe2√

2
. This contribution to the tension from the

magnetic field for fixed flux k can be written as

1

2e2

∫
C
F 2

12 =
Φ2

e2πR2
, (1.151)

where the magnetic flux has been defined as

Φ ≡ 1√
2

∫
C
F12 = −2πk , k > 0 . (1.152)

The tension of wrapping the wall around a circle is proportional to the circumference, while
the contribution from the Coulomb phase is proportional to the area. Summing up all con-
tributions, we can write the tension for fixed flux (k) as function of radius

T (R) =
Φ2

e2πR2
+ 2πRTwall + ε0πR

2 , (1.153)

and minimizing this expression with respect to the radius for large R, yields the wall-vortex
radius

RV =
1

4
√
ε0

√
− Φ

πe
, (1.154)
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which in turn yields the tension

T = −ξΦ = 2πξk , (1.155)

where the large radius condition translates into the large magnetic flux limit as RV ∝
√
k. It

is denoted an MIT bag scaling. This is an interesting scaling, as it coincides with the scaling
of the tension in the BPS case, namely T ∝ k. Notice that so far nothing has been said about
the coupling of the potential. This suggests that for all potentials with ε0 6= 0 the vortices
will become BPS in the limit of sufficiently large magnetic flux. This is exactly what has
been shown numerically in Ref. [173] for the Abelian-Higgs model.

Now in case that the vacuum energy ε0 vanishes, a different scaling is present which
yields the radius of the wall vortex

RV = 3

√
Φ2

e2πTwall

, (1.156)

which in turn gives the tension

T = 3
3

√
πT 2

wallΦ
2

e2
. (1.157)

Now the radius and the tension scale as RV ∝ k2/3, T ∝ k2/3, respectively. This scaling is
denoted the SLAC bag scaling.

In the case that the vacuum energy ε0 is sufficiently small (much less than the maximum
of the potential), an intermediate scaling will appear, namely the above mentioned SLAC
bag scaling. However, at very large magnetic flux, the MIT bag scaling will take over and
the tension will again become proportional to k. In the case with ε0 strictly zero, the SLAC
bag scaling is no longer intermediate but the true large magnetic flux scaling.

1.5 Chern-Simons
As already mentioned in the motivation, the Chern-Simons action is interesting for many

reasons, among others that it is a topological term thus independent of the metric in the
Lagrangian; it can naturally be embedded into non-relativistic theories by coupling it to
the Schrödinger equation, which is a very useful property for condensed matter problems.
Furthermore, it provides interesting features like fractional spin5 and fractional charge [178,
179, 180, 181, 182, 183, 184, 185, 186]; and finally provides a topological mechanism
of mass generation [187]. The price to pay is that it does only exist in odd space-time
dimensions, thus 3, 5, . . . and we will here consider only 3 = 2 + 1.

The action can be written simply in terms of the integral of forms as

SCS = − µ

8π

∫ (
dA ∧ A− 1

3
A ∧ A ∧ A

)
. (1.158)

5The fractional spin and statistics was first introduced in the NLσM with a Hopf term in the seminal paper
[174] by Wilczek and later studied in subsequent works [175, 176, 177].
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Note that there has not been used the space-time metric anywhere. Let us write the corre-
sponding Yang-Mills action

SYM = − 1

4g2
YM

∫
R3

√
det g gµρgνσFµνFρσ . (1.159)

If we take these two actions and calculate the corresponding contribution to the energy as
the time-time component of the energy-momentum tensor, we get (in flat space-time)

E =
1

4g2
YM

∫
R2

(
F 2
i0 + F 2

12

)
. (1.160)

for the Yang-Mills action, while the Chern-Simons action does not contribute at all.
The Lagrangian for Maxwell and Yang-Mills theories is gauge invariant by construction.

The action for Chern-Simons theories does not a priori look gauge invariant (however that
is not quite so). Let us first consider the Abelian Lagrangian

L = −κ
4
εµνρAµ∂νAρ , (1.161)

and then make a gauge transformation Aµ → Aµ + ∂µΛ, the Lagrangian changes as

δL = −κ
4
∂µ (Λεµνρ∂νAρ) , (1.162)

which is nothing but a total derivative. Let us now consider a non-Abelian case, that is only
a simple group, with the following Lagrangian

L = − µ

8π
εµνρTr

[
AµFνρ − i2

3
AµAνAρ

]
, (1.163)

and consecutively the gauge transformation Aµ → UAµU
−1 + i(∂µU)U−1 which yields

L → L +
iµ

4π
εµνρ∂µTr

[
U−1 (∂νU)Aρ

]
+

µ

12π
εµνρTr

[
U−1 (∂µU)U−1 (∂νU)U−1 (∂ρU)

]
, (1.164)

where the first term is a total derivative. The last term, however, is the winding number
density of the group element U

ω(U) ≡ 1

24π2
εµνρTr

[
U−1 (∂µU)U−1 (∂νU)U−1 (∂ρU)

]
, (1.165)

which has the property Υ ≡ ∫R3 ω(U) ∈ Z. Thus we see that this last term gives rise to a
change in the action

δS = 2πµΥ . (1.166)

Taking µ ∈ Z as integers only, leaves the quantum amplitude gauge invariant. That is, the
constant can be undone by a large gauge transformation.
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Another very interesting fact about Chern-Simons theory is that it provides a topological
mechanism for generating mass in a gauge theory [187]. Let us consider a neat Abelian
example that combines Chern-Simons and Maxwell terms

L = − 1

4e2
FµνF

µν − κ

4
εµνρAµ∂νAρ , (1.167)

which has the equations of motion

∂µF
µσ − κe2

4
εµνσFµν = 0 . (1.168)

Defining the dualized field strength as

F̃ λ ≡ 1

2
ελµνFµν , (1.169)

and inserting the equation of motion in terms of the dualized field strength into itself, leaves
us with a Klein-Gordon-like equation for every component of this field[

∂µ∂
µ +

(
κe2

2

)2
]
F̃ λ = 0 . (1.170)

The same mass can also easily be calculated by obtaining the propagator of the gauge field
and reading off the pole. This mass generation has nothing to do with spontaneous symmetry
breaking (SSB). It can however be combined with the Higgs mechanism in the standard way,
which will lead to two different massive modes in the gauge field.

1.5.1 Abelian Chern-Simons Higgs model
We will now make a short review of the Abelian Chern-Simons-Higgs model by coupling

a complex scalar field to the Abelian Chern-Simons term

L = −1

4
κεµνρAµ∂νAρ + |DµH|2 − 1

κ2

(|H|2 − ξ)2 |H|2 , (1.171)

where the potential is tuned to its self-dual value [188, 189, 190, 191, 192]. There are two
vacua in this Abelian theory, a symmetric vacuum where 〈H〉 = 0 and an asymmetric vac-
uum with |H| = √ξ. The energy can be written as the time-time component of the energy-
momentum tensor, which as we have already seen, does not include the Chern-Simons term

E =

∫
C

[
|D0H|2 + |DiH|2 +

1

κ2

(|H|2 − ξ)2 |H|2
]
. (1.172)

The equations of motion are

DµDµH +
1

κ2

(|H|2 − ξ) (3|H|2 − ξ)H = 0 , (1.173)

κεσµνFµν = −i2
√

2
[
H†DµH −H (DµH)†

]
. (1.174)
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In particular, the last equation is the Gauss law (1.174). The electromagnetic field is non-
dynamical since there is no Maxwell term and the time component of the gauge field is thus
algebraically determined

A0 =
κF12

2|H|2 +
i√
2

H†∂0H −H∂0H
†

|H|2 . (1.175)

Hence, it will enter the Hamiltonian only through the covariant derivative.
Performing the Bogomol’nyi completion [193] we get

T =

∫
C

[∣∣∣∣D0H − i

κ

(|H|2 − ξ)H∣∣∣∣2 + 4
∣∣D̄H∣∣2 − ξ√

2
F12 − iεij∂i

(
(DjH)H†

)]
,

(1.176)

where the complex covariant derivative is defined as D̄ ≡ (D1 + iD2)/2. Thus, the bound
on the energy is

E ≥ −ξΦ , (1.177)

where the magnetic flux has been defined as

Φ ≡ 1√
2

∫
C
F12 = −2πk , (1.178)

where k ∈ Z+ is the usual U(1) winding number or the so-called vorticity. The BPS-
equations can now readily be read off the expression for the tension yielding

D0H − i

κ

(|H|2 − ξ)H = 0 , (1.179)

D̄H = 0 , (1.180)

which has to be accompanied by the Gauss law, being the σ = 0 component of Eq. (1.174)
and can be written as

F12 = −i
√

2

κ

[
H†D0H −H (D0H)†

]
. (1.181)

By combining the first BPS equation (1.179) with the Gauss law, we can finally obtain a
system for the BPS Chern-Simons vortex which is similar to the ones for Yang-Mills or
Maxwell (ANO) vortices, consisting of an equation for the magnetic field together with a
“covariant holomorphy” condition

F12 =
2
√

2

κ2

(|H|2 − ξ) |H|2 , (1.182)

D̄H = 0 . (1.183)

Now we can insert the radially symmetric Ansatz (1.135) and obtain

∂ra

r
+

2ξ2

kκ2

(
h2 − 1

)
h2 = 0 , (1.184)

∂rh− k

r
(1− a)h = 0 , (1.185)
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which in turn can be combined to a single second order differential equation for h

∇2 log h− 2ξ2

κ2

(
h2 − 1

)
h2 = 0 . (1.186)

The BPS mass can now easily be read off and it is

mκ =
2ξ

κ
. (1.187)

To find the vortex solutions (for each k), the following boundary conditions should be im-
posed

r → 0 : a ∝ r2k+2 , h ∝ rk , (1.188)
r →∞ : a→ 1 , h→ 1 . (1.189)

1.5.2 Maxwell-Chern-Simons-Higgs model

Adding a Maxwell term to the Chern-Simons-Higgs Lagrangian, we have a richer sys-
tem which will contain both Abrikosov-Nielsen-Olesen (ANO) vortices and Chern-Simons
vortices in respective limits of the coupling constants [194, 195].

The self-dual Maxwell-Chern-Simons-Higgs Lagrangian reads [194, 195]

L = − 1

4e2
FµνF

µν − 1

4
κεµνρAµ∂νAρ + |DµH|2 +

1

2e2
(∂µφ)2

− 1

2
φ2|H|2 − e2

4

(
|H|2 − κ√

2
φ− ξ

)2

. (1.190)

Note that in order to obtain a self-dual theory, we have to introduce a neutral real scalar
field φ. The interesting point to note about this theory is that it reduces to the Abelian-
Higgs theory and the Chern-Simons theory in respective limits of the couplings e, κ. The
theory has two degenerate vacua; a symmetric one with 〈H〉 = 0 and 〈φ〉 = −√2ξ/κ
and an asymmetric one where |〈H〉| = ξ and 〈φ〉 = 0. Topological solitons exist in the
asymmetric phase while so-called non-topological solitons exist in the symmetric phase,
see e.g. Refs. [194, 195].

Let us explain the two limits giving the Abelian-Higgs model and the Chern-Simons-
Higgs model, respectively. First we take κ → 0 while keeping e fixed, which allows us
to set φ = 0. This yields exactly the Lagrangian (1.125). The other limit is obtained by
sending e → ∞ for fixed κ, which in turn allows us to integrate out the neutral scalar field
φ as

φ =

√
2

κ

(|H|2 − ξ) . (1.191)

This gives us the Lagrangian (1.171).
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Let us now write the energy of the vortex system using the Bogomol’nyi completion

E =

∫
C

[
1

2e2
(F0i)

2 +
1

2e2
(F12)2 +

1

2e2
(∂0φ)2 +

1

2e2
(∂iφ)2

+ |D0H|2 + |DiH|2 +
1

2
φ2|H|2 +

e2

4

(
|H|2 − κ√

2
φ− ξ

)2
]

=

∫
C

[
1

2e2

(
F12 − e2

√
2

(
|H|2 − κ√

2
φ− ξ

))2

+
1

2e2
(F0i + ∂iφ)2

+ 4
∣∣D̄H∣∣2 +

∣∣∣∣D0H − i√
2
φH

∣∣∣∣2 +
1

2e2
(∂0φ)2

− ξ√
2
F12 − 1

e2
∂i (F0iφ)− iεij∂i

(
(DjH)H†

) ]
. (1.192)

It is not hard to understand that the above demonstrated limits manifest themselves similarly
in the BPS equations (see e.g. Ref. [7]), which are

F12 − e2

√
2

(
|H|2 − κ√

2
φ− ξ

)
= 0 , (1.193)

F0i + ∂iφ = 0 , (1.194)
D̄H = 0 , (1.195)

D0H − i√
2
φH = 0 , (1.196)

∂0φ = 0 , (1.197)

and they should be accompanied by the Gauss law

1

e2
∂µF

µσ − κ

4
εµνσFµν − i√

2

(
H†DσH − (DσH)†H

)
= 0 . (1.198)

It is easy to see that static solutions are found by setting A0 = φ. The vortex system is then
found with this condition together with the combination of Eq. (1.196) and the Gauss law,
together of course with the usual Eq. (1.195). This leaves us with

D̄H = 0 , (1.199)

F12 − e2

√
2

(
|H|2 − κ√

2
φ− ξ

)
= 0 , (1.200)

1

e2
∂2
i φ+

κ

2
F12 − φ|H|2 = 0 . (1.201)

For completeness, let us demonstrate the two limits in this vortex system. Taking κ→ 0, we
see that the first two equations (1.199)-(1.200) describe the ANO vortex (1.132) while the
third equation has just a trivial solution (and all other solutions are gauge equivalent to the
trivial one). Taking the other limit, by sending e→∞ we find from the second equation the
value of φ which is being integrated out identically as in Eq. (1.191) while the last equation
(1.201) becomes the one describing the Chern-Simons vortex (1.182).
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1.5.3 Non-Abelian Chern-Simons model

By the same token as in the last Section we can extend the Maxwell-Chern-Simons
model to a non-Abelian generalization by considering a gauge group G = U(1) × G′ in-
stead of just G = U(1). This will be the Yang-Mills-Chern-Simons-Higgs theory. We
are considering the following N = 2 supersymmetric theory (viz. with 4 supercharges) in
d = 2 + 1 dimensions with the gauge group G = U(1) × G′, where G′ is a simple group.
The bosonic part of the Lagrangian density reads

LYMCSH =− 1

4g2

(
F a
µν

)2 − 1

4e2

(
F 0
µν

)2 − µ

8π
εµνρ

(
Aaµ∂νA

a
ρ −

1

3
fabcAaµA

b
νA

c
ρ

)
− κ

8π
εµνρA0

µ∂νA
0
ρ (1.202)

+
1

2g2
(Dµφa)2 +

1

2e2

(
∂µφ

0
)2

+ Tr (DµH) (DµH)† − Tr |φH −Hm|2

− g2

2

(
Tr
(
HH†ta

)− µ

4π
φa
)2

− e2

2

(
Tr
(
HH†t0

)− κ

4π
φ0 − 1√

2N
ξ

)2

,

where a = 1, . . . , dim(G′) for the non-Abelian group, the index 0 is for the Abelian group
and α = 0, 1, . . . , dim(G′). We are now considering non-Abelian Chern-Simons theories
with an Abelian factor in the gauge symmetry. Therefore we have rescaled the Chern-
Simons coupling constant κ→ κ/4π. Hence equal coupling (level) for the non-Abelian and
Abelian Chern-Simons interactions is now corresponding to κ = µ. We use the conventions

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (1.203)
DµH = (∂µ + iAµ)H , (1.204)
Dµφ = ∂µφ+ i [Aµ, φ] . (1.205)

Aµ = Aαµt
α is the gauge potential, Fµν is the field strength, φ is an adjoint scalar field

which we can take to be real and finally H is a color-flavor matrix of dimension N ×
NF of NF matter fields. We will define N ≡ dim(RG′) but for simplicity we choose the
representation RG′ as the fundamental one of G′. We are using the following normalization
of the generators

t0 =
1N√
2N

, Tr
(
tatb
)

=
1

2
δab . (1.206)

There are four coupling constants entering our game at this point; e ∈ R is the Abelian
coupling of the Yang-Mills kinetic term (Maxwell), g ∈ R the is the coupling for the semi-
simple part of the Yang-Mills kinetic term, which corresponds to G′. κ ∈ R is the Abelian
coupling of the Chern-Simons term while µ ∈ Z are solely integers to render the non-
Abelian Chern-Simons action gauge invariant up to large gauge transformations [196]. ξ is
a Fayet-Iliopoulos parameter. Finally, m is a mass matrix which we will set to zero in the
following.
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The tension of the system reads

T =

∫
C

[
1

2g2
(F a

0i)
2 +

1

2g2
(F a

12)2 +
1

2e2

(
F 0

0i

)2
+

1

2e2

(
F 0

12

)2 (1.207)

+
1

2g2
(D0φ

a)2 +
1

2g2
(Diφa)2 +

1

2e2

(
∂0φ

0
)2

+
1

2e2

(
∂iφ

0
)2

+ Tr (D0H)† (D0H) + Tr (DiH)† (DiH) + Tr |φH −Hm|2

+
g2

2

(
Tr
(
HH†ta

)− µ

4π
φa
)2

+
e2

2

(
Tr
(
HH†t0

)− κ

4π
φ0 − 1√

2N
ξ

)2
]
.

Using the following useful identity

DiH (DiH)† = (D1 ± iD2)H [(D1 ± iD2)H]† ∓ Fα
12t

αHH† ∓ iεij∂i
(
(DjH)H†

)
,

(1.208)

we perform a standard Bogomol’nyi completion

T =

∫
C

[
1

2g2

(
F a

12 − g2
(

Tr
(
HH†ta

)− µ

4π
φa
))2

+
1

2g2
(F a

0i +Diφa)2 (1.209)

+
1

2e2

(
F 0

12 − e2

(
Tr
(
HH†t0

)− κ

4π
φ0 − ξ√

2N

))2

+
1

2e2

(
F 0

0i + ∂iφ
0
)2

+ 4Tr
∣∣D̄H∣∣2 + Tr |D0H − i (φH −Hm)|2 +

1

2g2
(D0φ

a)2 +
1

2e2

(
∂0φ

0
)2

− ξ√
2N

F 0
12 + iTr

[(
H†D0H − (D0H)†H

)
m
]

− 1

g2
∂i (F

a
0iφ

a)− 1

e2
∂i
(
F 0

0iφ
0
)− iεijTr ∂i

(
(DjH)H†

) ]
,

where we have used Gauss’ law. Focusing on BPS-solutions, the tension is given by the
saturated Bogomol’nyi bound

TBPS = − ξ√
2N

∫
C
F 0

12 + iTr
∫

C

[(
H†D0H − (D0H)†H

)
m
]
,

= 2πξν + Tr (Qm) , (1.210)

with ν being the U(1) winding and

Q ≡ i

∫
C

[(
H†D0H − (D0H)†H

)]
, (1.211)

are the Noether charges associated with the breaking of color-flavor symmetry. The BPS-
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equations are readily read to be

D̄H = 0 , (1.212)

F a
12 − g2

(
Tr
(
HH†ta

)− µ

4π
φa
)

= 0 , (1.213)

F 0
12 − e2

(
Tr
(
HH†t0

)− κ

4π
φ0 − ξ√

2N

)
= 0 , (1.214)

F a
0i +Diφa = 0 , (1.215)
F 0

0i + ∂iφ
0 = 0 , (1.216)

D0H − i (φH −Hm) = 0 , (1.217)
D0φ

a = 0 , (1.218)
∂0φ

0 = 0 , (1.219)

which have to be accompanied by the Gauss law

1

g2
DiF e

0i −
µ

4π
F e

12 −
1

g2
f eabφaD0φ

b − iTr
(
H†teD0H − (D0H)† teH

)
= 0 , (1.220)

1

e2
∂iF

0
0i −

κ

4π
F 0

12 − iTr
(
H†t0D0H − (D0H)† t0H

)
= 0 , (1.221)

Considering nowm = 0, we can consistently choose φ = A0 in temporal gauge (appropriate
for static solutions). We are left with the following system

D̄H = 0 , (1.222)

F a
12 − g2

(
Tr
(
HH†ta

)− µ

4π
φa
)

= 0 , (1.223)

F 0
12 − e2

(
Tr
(
HH†t0

)− κ

4π
φ0 − ξ√

2N

)
= 0 , (1.224)

1

g2
D2
i φ

a +
µ

4π
F a

12 − Tr
({φ, ta}HH†) = 0 , (1.225)

1

e2
∂2
i φ

0 +
κ

4π
F 0

12 − Tr
({
φ, t0

}
HH†

)
= 0 , (1.226)

where φ ≡ φαtα. Choosing for instance G′ = SU(N), we have the following system

D̄H = 0 , (1.227)

F a
12t

a − g2

2

(
HH† − 1

N
Tr
(
HH†

)
1N − µ

2π
φata

)
= 0 , (1.228)

F 0
12t

0 − e2

2

(
1

N

(
Tr
(
HH†

)− ξ)1N − κ

2π
φ0t0

)
= 0 , (1.229)

1

g2
D2
i φ

ata +
µ

4π
F a

12t
a − 1

2

{
HH†, φ

}
+

1

N
Tr
(
HH†φ

)
1N = 0 , (1.230)

1

e2
∂2
i φ

0t0 +
κ

4π
F 0

12t
0 − 1

N
Tr
(
HH†φ

)
1N = 0 . (1.231)

Let us close this Section with a discussion of the various models that can be reached as
limits of this wonderful theory just presented.
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• Maxwell-Yang-Mills-Higgs (κ→ 0 and µ→ 0,m = 0): There exist a Higgs vacuum:
H = 1N

√
ξ/N and φ = 0 (it could be of a more complicated form depending on the

gauge symmetry). The vortices in this model are the non-Abelian generalization of
the ANO vortex.

The mass spectrum is of the form

m2
e =

ξe2

N
, m2

g =
ξg2

N
, (1.232)

which due to supersymmetry are the masses for both the vector bosons and the Higgs
bosons, where me is for the trace-part and mg is for the traceless part.

• Maxwell-Yang-Mills-Chern-Simons (H ≡ 0, m = 0)

If we eliminate completely the Higgs fields, the model reduces to the Maxwell-Yang-
Mills-Chern-Simons model (which in turn allows us to further eliminate the FI pa-
rameter by a change of variables). The vector multiplet here acquires a mass by the
topological argument presented previously in the Abelian case

mκ =
κe2

4π
, mµ =

µg2

4π
. (1.233)

where mκ is for the trace-part while mµ is for the traceless part of the gauge fields.

• Chern-Simons-Higgs (e→∞ and g →∞)

The Maxwell and Yang-Mills kinetic terms disappear in this limit and the theory re-
duces to the Chern-Simons-Higgs model. Furthermore, the adjoint scalar fields φα

become non-dynamical fields and can be integrated out as follows

φ0 =
4π

κ

(
Tr
(
HH†t0

)− ξ√
2N

)
, φa =

4π

µ
Tr
(
HH†ta

)
. (1.234)

The model then acquires a sixth order potential. There exist two vacua in this model.
One is in a symmetric phase where 〈H〉 = 0 and the symmetry remains unbroken
in the vacuum. The vector multiplets are decoupled, so the Higgs fields are the only
dynamical degrees of freedom. Their masses are

mH =
2πξ

κ
. (1.235)

The other vacuum is in the Higgs phase where the gauge symmetry is completely
broken. The longitudinal part of the gauge fields acquire a mass via the Higgs mech-
anism. By supersymmetry the mass of the Higgs fields is the same as that of gauge
fields

mκ∞ =
2πξ

κ
, mµ∞ =

2πξ

µ
. (1.236)

In the symmetric phase of the Abelian case, it is known that non-topological vortices
do in fact exist.
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(a) (b)

Figure 1.2: (a) The profile function h and (b) the energy density for the BPS ANO vortex found by
the cooling method, both shown as function of the radial coordinate r and the fictitious time t. Notice
the quick convergence.

1.6 Numerical methods

1.6.1 Cooling method

The method that will prove most powerful for solving the equations that we have encoun-
tered in the studies of vortices etc., is the cooling method which is also called the relaxation
method. It is convenient because the method by construction seeks towards an extremum of
the action, which is exactly what we want; the solution to the equations of motion. Let us
just mention the technique briefly by solving an easy example, the BPS ANO vortex. Take
Eq. (1.141) and set for convenience ξe2 = 2. Then we add a fictitious time-dependence and
equate the∇2 +X operator with the ∂t operator. In this simple example we have

∂2
rh+

1

r
∂rh− (∂rh)2

h
− (h2 − 1

)
h = ∂t h , h = h(t, r) . (1.237)

The method is very fast and in a short time t, the solution will be found. In Fig. 1.2 we show
the field h and the energy distribution in a three-dimensional graph as function of the radial
coordinate r and the fictitious time t. It is easily seen that the surface does not change as
function of time after t > 10, which means that a solution has been obtained.

1.6.2 Shooting method

Let us briefly describe another method that we have used in some cases, which is the
shooting method. Let us take the same example as in the last Subsection, namely the BPS
ANO vortex. We take again ξe2 = 2 and rewrite the equations as a system into the form

∂r

(
a
h

)
=

(−r (h2 − 1)
1
r

(1− a)h

)
. (1.238)
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Figure 1.3: (a) The shooting parameters and (b) the error function for the BPS ANO vortex used by
a steepest descent method to find the solution.

The boundary conditions at r → ∞ are a → 1 and h → 1 with exponential corrections,
which means that we can search for the solution by minimizing the following function

C(a∞, h∞) = |a∞ − 1|2 + |h∞ − 1|2 , (1.239)

where we have defined a∞ = limr→rmax a(r) with rmax being the finite cut-off in the nu-
merical simulation (and the definition is similar for h(r)). Using the equations of motion
and inserting a power series, we find that for the BPS case, which we are studying, the first
terms in the limit r → 0 in the expansion are

a ' 1

2
r2 , (1.240)

h ' Ar , (1.241)

where A is our shooting parameter. For the non-BPS ANO vortex, we need two shooting
parameters and for non-Abelian cases, we also have a more complex parameter space. The
method nevertheless is exactly the same. In Fig. 1.3a we show the shooting parameters
used by the steepest descent method to minimize the function C which finds the value A =
0.853152, while in Fig. 1.3b we show the corresponding error function C. The profile
functions a, h are shown in Fig. 1.4.

1.7 Vortex dynamics and effective world-sheet theory
Let us briefly discuss the quantum effects of the vortices in the N = 2 supersymmetric

U(N) gauge theory with NF = N hypermultiplets. There is, as already mentioned, both
a U(N) vector-multiplet and an adjoint chiral multiplet in the theory. We consider having
a non-negative FI parameter ξ > 0, i.e. we put the theory on the Higgs branch, but we do
not break N = 2 here. This is also an interesting topic, especially related to the questions
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Figure 1.4: (a) The profile functions h and a for the BPS ANO vortex found using the shooting
method. We have set ξe2 = 2 and rmax = 10.

concerning non-Abelian monopoles. As already mentioned in the first Chapter, an exact
correspondence between the BPS spectra of this theory and an N = (2, 2) supersymmetric
CPN−1 σ model has been noticed in Ref. [107] and explained via the non-Abelian vortex
solutions in the Refs. [8, 106, 104]. A very important ingredient of the spectrum are the
monopoles. Considering a high-energy theory with a simple gauge group (without an over-
all U(1) factor), it can be broken down as SU(N + 1) → U(1) × SU(N) giving rise to
our model as the low-energy theory. There will be various monopoles associated with this
type of breaking, for instance, very heavy monopoles which are associated with a weight
vector of the (dual) group in SU(N) on which vortices can end [105]. We will not discuss
this kind of breaking further in this Section, but concentrate on the lighter monopoles which
do appear in the BPS spectrum of the theory as confined monopoles and as we will see, as
kinks on the low-energy effective world-sheet theory.

Let us first consider how the low-energy effective world-sheet action comes about. Choos-
ing an Ansatz by embedding the ANO vortex solution in the upper-left corner of the matrices
of U(N) as

U−1HU = diag (h(r), f(r)1N−1) , (1.242)

U−1Aaθt
aU =

b(r)− 1

r
T , T ≡ 1√

2N(N − 1)
diag

(−N + 1,1N−1

)
, (1.243)

U−1A0
θt

0U =
1− a(r)

r
t0 , (1.244)

we can define the orientational vector from U ∈ GC+F i.e. a (global) color-flavor transfor-
mation

UTU−1 = −nn†+
1N√

2N(N − 1)
, (1.245)
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with n being a row vector in the fundamental representation of SU(N), which has to obey
the following constraint

n†n = 1 , (1.246)

while the combination nn† is an Hermitian matrix. This vector will furthermore turn out
to be the coordinate of the σ model. Its components will be assumed to be slowly varying
functions of x3 (i.e. along the direction of the vortex world-sheet) and time x0. The σ model
describes the fluctuations of the orientational modes along the vortex, i.e. zero-modes and
thus there is no potential term in the effective action. The non-linear formulation of the σ
model reads

Sworld-sheet = 2β

∫
R2

[
∂αn

†∂αn+
(
n†∂αn

)2
]
, (1.247)

which is equivalent to a linear gauged U(1) formulation which has the former action as its
strong coupling limit (e2d →∞)

Slinear gauged =

∫
R2

[
− 1

4e2
2d

Fαβ + 2βDαn†Dαn+
1

e2
2d

|∂ασ|2

− 4β|σ|2n†n− 2e2
2dβ

2
(
n†n− 1

)2
]
, (1.248)

where it is understood that the integrals are over the x3 coordinate and time. σ is a complex
scalar and β is interestingly found to be related to the coupling of the four-dimensional
theory as

β =
2π

g
, (1.249)

in the BPS case, where we have set e = g in the four-dimensional gauge theory. The physical
UV cut-off for the σ model should be taken as

√
ξg while below this value, the coupling β

runs due to the two-dimensional renormalization group (RG) flow

4πβ = N ln

(
µ

Λσ

)
, (1.250)

where µ is the energy-scale while Λσ is the dynamical scale of the σ model, which turns out
to be identified with the strong-coupling scale of the mother gauge theory Λσ = ΛSU(N).
Below this scale, the four-dimensional gauge coupling is frozen and β takes over.

In this current case we are reviewing now, we are in a good shape due to the fact that
Witten has solved the CPN−1 model in the large N limit [197]. The calculation can be done
due to the non-perturbatively generated exact superpotential by a summation of all-orders
instanton effects. Classically, the orientational field n can take an arbitrary direction and
one might expect a SSB taking place which in turn would give rise to massless Goldstone
modes. This is not the case. In fact it is not allowed by the theorem due to Coleman [198]
in two dimensions. What happens is that due to quantum effects, the symmetry is restored
and the condition on the norm of the field n gets in some sense relaxed. Witten showed
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in his seminal paper [197] that this model has indeed N vacua, all with a mass gap. The
moduli space of continuous solutions is gone and the fields n become massive. At strong
coupling, the chiral condensate is the order parameter of the model and its value differs
in different vacua. Furthermore, there are two anomalies taking place here, first the chiral
anomaly breaks the chiral U(1) symmetry down to Z2N while the fermion condensate – the
order parameter, breaks it further down to Z2. An interesting consequence of the fact that
quantumly, the field n does not take a particular direction, is that the orientation becomes
completely smeared out. That is, the expectation value vanishes 〈n〉 = 0. Hence, we are
not allowed to identify this quantum vortex in a single vacuum, with the classical one which
uses a definite Cartan generator in the group.

Very interestingly, there has been made a mirror model of the CPN−1 σ model, in which
the description is in the form of a Coulomb gas of instantons [199] which in turn is equivalent
to an N = 2 affine Toda theory [200, 201, 202].

Let us return to the already mentioned monopoles in the four-dimensional theory. First
we will set the FI parameter to zero ξ = 0 and thus enter the Coulomb branch, however,
we now want to turn on different masses, breaking the gauge symmetry with the following
superpotential

W =
√

2

NF∑
i

Q̃i (Φ +mi)Qi . (1.251)

Let us furthermore define the following antisymmetric matrix ∆mij ≡ mi −mj . Until now
we have always assumed this matrix to be zero, breaking the gauge symmetry completely,
however, if all the parameters mi are different, we have the following breaking

U(N)
∆m−→U(1)N , (1.252)

supporting ’t Hooft-Polyakov monopoles in the Coulomb phase – in fact N − 1 different
ones. Now consider turning back on the FI parameter ξ 6= 0. Vortex strings can be made,
however, the non-Abelian nature is absent – the moduli space has been lifted and there are
no continuous orientational moduli. That is, the vector n has N discrete possibilities which
resembles a completely Abelian nature. The vortices must be present and furthermore they
have to confine the flux due to the monopoles. An amazing result found by Shifman-Yung
[8] is that the confined monopoles in the bulk theory manifest themselves as kinks in the
CPN−1 model. We will not provide the demonstration here, but simply show an intuitive
picture of what happens, see Fig. 1.5. In fact, it has been shown that the masses of the
monopoles coincide with those of the kinks on the σ model. The mass turns out to be
2β∆mij and this is also welcomed by the fact that masses of the BPS monopole solutions
cannot depend on the non-holomorphic quantity ξ. The last picture of Fig. 1.5 is the situation
in which the mass differences are being turned off and we are entering a highly quantum
regime. Here the mass of the kinks and thus the monopoles becomes 2Λσ/π.

We have discussed the monopoles of the BPS spectrum of the two theories, the four-
dimensional one and the two-dimensional σ model. The rest of the spectrum does in fact
also coincide in these two theories as already mentioned. For instance, in the perturbative
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Figure 1.5: Kink-monopoles trapped in the non-Abelian vortex string, first in the Coulomb phase,
then with a small FI parameter and for increasing ξ the monopole becomes confined by the vortex
string and finally it enters a highly quantum regime. This figure is taken from Ref. [8].
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Figure 1.6: A D-brane construction of the vortex theory made by two NS5 branes, N D3 branes and
k D-strings. This figure is taken from Ref. [9].

spectrum, excitations of the string can give rise to massless W bosons trapped in the vor-
tex core [106]. This correspondence has been shown to hold both in the weak and strong
coupling regime, i.e. an amazing contribution from vortices to non-Abelian gauge theories.

For a single vortex we can understand the effective theory quite well in terms of the
orientational vector n. However, for k > 1 it proves convenient to consider a D-brane
construction to understand the low-energy effective theory. We show a picture of such a
construction made by Hanany and Tong [9] in Fig. 1.6. The vortex theory is made by writing
down the world-volume theory from the D-strings. This theory is anN = (2, 2), U(k) gauge
theory in 2 dimensions. It has a U(k) vector multiplet consisting of a gauge field along
with three adjoint scalar fields. And furthermore an adjoint chiral multiplet with a complex
scalar field Z. Finally, there are N fundamental chiral multiplets with complex fields ψ
which come about from the strings connecting the D-strings with the D3-branes. Roughly
speaking, ψ are the orientational zero-modes of the vortex string and the eigenvalues of Z
are the positions of the k vortices in the vortex plane. Let us conclude this Section by writing
down the Lagrangian of the effective vortex-theory

Lk−vortex = Tr
[

1

2e2
2d

DαφrDαφr +DαZ†DαZ +DαψDαψ† − 1

2e2
2d

[φr, φs]2 − |[Z, φr]|2

− ψψ†φrφr − e2
2d

2

(
ψψ† − [Z,Z†]− ξ1k)2

]
, (1.253)

where the indices r, s = 1, 2, 3. We will leave the interested reader with the literature for
further brane constructions.
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Abelian Chern-Simons vortices





CHAPTER 2

Type III vortex

We study topological Chern-Simons vortices in 2 + 1 dimensions. It is shown that in the
large magnetic flux limit, topological vortices are well described by a Chern-Simons domain
wall compactified on a circle with the symmetric phase inside and the asymmetric phase on
the outside. A generic renormalizable potential has two dimensionless parameters that can
be varied. Variation of only one of them leads to type I and type II vortices, very similar
to the Abrikosov-Nielsen-Olesen (ANO) case. Variation of both the parameters leads to a
much richer structure. In particular we have found a new type of vortex, which is type I-like
for small flux and then becomes type II-like for larger flux. We will denote it the type III
vortex. This results in a stable vortex with vorticity greater than one.

2.1 The large magnetic flux limit
We will now review the domain wall in the Chern-Simons model with magnetic flux

[192, 203]. It is possible to add magnetic flux to the domain wall, by switching on a gauge
field Ay(x) such that Ay(−∞) = −√2f and Ay(+∞) = 0. The result is a magnetic flux
density equal to f [192]. The wall tension can be written as

Twall+flux =

∫
R

[
|∂xH|2 +

κ2 (∂xAy)
2

8|H|2 +
1

2
A2
y|H|2 +

1

κ2

(|H|2 − ξ)2 |H|2
]

=

∫
R

[∣∣∣∣∂xH +
1

κ

(|H|2 − ξ)H∣∣∣∣2 − 1

2κ
∂x
(|H|2 − ξ)2

]

+

∫
R

[
1

2

∣∣∣∣AyH +
κ

2

∂xAy
H†

∣∣∣∣2 − κ

4
∂x
(
A2
y

)]
, (2.1)

which yields the BPS tension and BPS wall solutions

Twall+flux =
ξ2

2κ
+
κf 2

2
, Hwall(x) =

√
ξ√

1 + e−m(x−x0)
, (2.2)

where the mass parameter is defined as m ≡ 2ξ/κ.
We can now construct the Chern-Simons wall vortex as follows. We consider the com-

pactification of the wall with flux on a circle of radius R (i.e. along the y-direction). The
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(A) (B)

Figure 2.1: Schematic representation of the basic spherical symmetric solitons in the Chern-Simons-
Higgs theory. They are both made of the domain wall compactified on a circle and stabilized by
the angular momentum. We denote the symmetric vacuum by 0 and the asymmetric vacuum by 1.
According to whether the vacuum 0 (unbroken phase) is inside or outside of the circle, we have
respectively the topological vortex or the non-topological soliton. In both cases, we have chosen the
orientation of the magnetic flux out of the plane (towards the reader).

stabilization is achieved through a balance between the tension of the wall and the energy
due to the magnetic field. Notice that the total magnetic flux is the topological constant for
the vortex and thus is fixed, while the radius and flux density are related as follows

Φ = 2πRf = −2πk < 0 . (2.3)

The energy of the wall vortex as function of the radius is

E(R) =
ξ2πR

κ
+
κΦ2

4πR
, (2.4)

and the minimization of this system gives

R = − κΦ

2πξ
= − Φ

πm
, E = −ξΦ . (2.5)

This solution saturates the BPS bound (1.177) of the vortex system. This implies that in the
large flux limit of the vortex, the solution should exactly become a compactified wall. A
useful remark in store, is that the flux density f of the wall vortex (the compactified wall,
see Fig. 2.1) is simply proportional to the mass

f = − k
R

= −m
2
. (2.6)

2.1.1 The BPS vortex
We now want to show that the scalar field of the vortex solution for large winding num-

bers k, simply has the profile of the domain wall of Eq. (2.2). For the numerical results we
shall set the mass m = 2, which corresponds to κ = ξ. The solution for winding number
k = 1 is shown in Fig. 2.2. We then solve the equations for various values of k. The corre-
sponding profile functions are shown in Fig. 2.3. It is observed that the profile functions of
the vortex at large k for the topological vortex are simply described by the profile function
of the domain wall (2.2) situated at radius (2.5). The magnetic field is then simply obtained
from (1.182).
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Figure 2.2: Profile functions for the Chern-Simons vortex with k = 1, m = 2, where the red line
(solid) is the scalar field profile, the green line (dash-dotted) is the electromagnetic potential profile
(i.e. a given by (1.135)) and the blue line (dashed) is the magnetic field. Notice that the magnetic
field is already for k = 1 pushed completely outside r = 0 and is thus always a ring of flux placed at
the vortex boundary.
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Figure 2.3: Profile functions for Chern-Simons vortex for various k. The radius of the vortex is
RV = k for m = 2. Notice that already for k = 650, the scalar field and the domain wall coincide.

2.1.2 The non-BPS vortex
A generic renormalizable potential in 2 + 1 dimensions is of sixth order, and can be

parametrized by two couplings α and β

V (|H|) =
α

κ2

(|H|2 − ξ)2 [|H|2 − β (|H|2 − ξ)] . (2.7)

When α = 1 and β = 0 it corresponds to the BPS potential (1.171). We now want to con-
sider the Chern-Simons solitons in the case of a generic potential. We shall here concentrate
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on the topological vortex, thus in the Higgs phase of the theory.
First we will give some qualitative remarks of what we would expect. Consider the

case β = 0, the potential still has two degenerate vacua; we are only changing the height
of the potential. The large flux limit is very useful in order to understand the qualitative
behavior. We still expect the vortex to become a compactified wall. The analysis of Section
2.1 should thus go unchanged through, apart from a factor of

√
α in front of the wall tension.

Keeping β = 0 and varying only α should thus give a phenomenology very similar to that
of the Abrikosov-Nielsen-Olesen (ANO) vortex. In the large flux limit the tension is always
asymptotically linear in k. Only for α = 1 this linear dependence is exact for all values
of k. In the intermediate regime the vortices are of type I (attractive) or type II (repulsive)
depending on α being smaller or greater than one, respectively.

We now want to consider the case of β different from zero. Since we are focusing on the
topological vortex, we choose β < 1 so that the Higgs phase remains the true vacuum while
the Chern-Simons phase acquires a vacuum energy density

ε0 =
αβξ3

κ2
, (2.8)

and is metastable for β < 1/3 and an unstable extremum otherwise.
The energy function for the compactified wall now reads

E(R) = TW(α, β)2πR +
κΦ2

4πR
+ ε0πR

2 , (2.9)

where TW(α, β) is the domain wall tension as function of the parameters α, β. Now to
obtain the wall vortex, we have to make a minimization with respect to the radius R, in the
large k limit. We will see shortly, that R is large in the large k limit, thus we can neglect the
first term in (2.9) and the result is

R = 3

√
κΦ2

8π2ε0

, E =
3

4
3

√
κ2ε0Φ4

π
, (2.10)

which is equivalent to the vortex radius and energy in the large flux limit and furthermore,
in terms of k, the radius and energy scale like R ∝ k2/3 and E ∝ k4/3. Consistently, the
radius goes as k2/3, (i.e. the first term in (2.9) goes like R while the two remaining terms go
like R2) and thus our assumption can be justified for sufficiently large k.

The equations of motion for the non-BPS Abelian Chern-Simons vortex are

∂2
ra−

1

r
∂ra− 2 (∂ra) (∂rh)

h
+m2 (1− a)h4 = 0 , (2.11)

1

r
∂r (r∂rh)− k2

r2
(1− a)2 h+

k2 (∂ra)2

m2r2h3
− 1

2ξ

∂V

∂h
= 0 . (2.12)

For a generic potential we obtain

1

2ξ

∂V

∂h
=
α

4
m2
(
h2 − 1

) [
3h2 − 3β

(
h2 − 1

)− 1
]
h . (2.13)
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In order to find numerical solutions, we need the boundary conditions at r → 0 and r →∞.
The limiting behavior of the profile functions are for r → 0

h = Ark , a = Br2k+2 , (2.14)

and for r →∞
h = 1− Fe−

√
αmr , a = 1−Ge−mr . (2.15)

From this behavior we can form the following conditions

lim
r→0

(kh− rh′) = 0 , lim
r→0

((2k + 2)a− ra′) = 0 , (2.16)

lim
r→∞

(
h+

h′√
αm

)
= 1 , lim

r→∞

(
a+

a′

m

)
= 1 . (2.17)

The vortex energy reads

E = 2πξ

∫
dr r

{
k2

m2

(∂ra)2

r2h2
+ (∂rh)2 +

k2

r2
(1− a)2 h2

+
α

4
m2
(
h2 − 1

)2 [
h2 − β (h2 − 1

)]}
. (2.18)

First, we study numerically the system with β = 0. The energy function of the compact-
ified wall will, however, change with respect to (2.9) and (2.10) because of zero ε0 and it
is

E(R) =

√
αξ2πR

κ
+
κΦ2

4πR
, (2.19)

which gives a radius and energy in the large flux limit of respectively

R =
κΦ

4
√
α2πξ

, E = − 4
√
αξΦ . (2.20)

In the large flux limit, we can calculate the profile functions for the scalar field and the gauge
field analytically, using the 1 + 1 dimensional system (the domain wall)

lim
k→∞

h =
1√

1 + e−
√
αm(x−x0)

, lim
k→∞

a =
em(x−x0)[

1 + e
√
αm(x−x0)

] 1√
α

. (2.21)

We find exact agreement of the numerical integrated profile functions for large values of k
with the above results; the vortex becomes a compactified wall in the large k limit.

In Fig. 2.4 is shown the vortex energy normalized for convenience by a numerical factor
and 4
√
α, which puts the different vortex energies on equal footing at large k. We denote

by E ≡ E
k

the vortex energy per unit flux. The curves for the vortex energy per unit flux E
approach the large flux limit value (i.e. 2πξ 4

√
α) approximately as 1/k (see Fig. 2.4).

We will now turn to the generic case with β 6= 0. In terms of k, the vortex energy per
unit flux E will go as k

1
3 in the large flux limit. First a word on our expectations. We seek

to combine the type I vortex behavior at small k (attractive force) with the large k behavior
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Figure 2.4: Vortex energy divided by 2πξ 4
√
αk as function of the winding number k, for various

values of α; 1/4, 1, 4, corresponding to a type I, a BPS and a type II vortex. 1/k fits of the non-BPS
vortex energies are shown and are seen to match reasonably at large k.

due to the presence of a non-zero vacuum energy density ε0 = αβξ3

κ2 . Naı̈vely, this gives
an attractive force for small k and a repulsive force for large k and thus a vortex with finite
units of flux greater than one (finite size) as the ones with additional flux will decay.

In Fig. 2.5 is shown the vortex energy per unit of flux for a type I (α < 1) vortex with
α = 1

128
where we switch on a small β = 0.03. For this value of β, the Chern-Simons

vacuum is metastable.

From the figure we can define three domains

A : 1 < k ≤ k0 , where E(k0) < E(k) ,∀k 6= n0 ,

B : k0 < k < k1 , where k1 ≡
{
k′ ∈ Z+ | min

(
E(k′)
k′

)
≥ E(1)

}
, (2.22)

C : k1 ≤ k ,

where we have assumed no degeneracy of the lowest energy state. Considering first the
domain A, we can prove stability as follows E(2) < 2E(1), is stable; E(3) < 3E(1), and
E(3)

3
< E(2)

2
⇒ E(3) < E(2) + E(2)

2
< E(2) + E(1), thus it is stable in all channels.

Generically

E(k + l) < E(k) +
l

k
E(k) , for k + l ≤ k0 ,

< E(k) + lE(1) , (2.23)
< E(k) + E(l) , for , l ≤ k ,

where k, l ∈ Z+. Hence, by induction it is seen that the vortices in domain A are stable to
decay in any channel.
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Figure 2.5: Vortex energy divided by 2πξk as function of the winding number k, for a vortex with
α = 1

128 and β = 0.03. The large k behavior is as predicted proportional to k
1
3 and the small k

behavior is type I-like, thus we have found a vortex with attractive force for small k and repulsive
force for large k. We will denote it a type III vortex. k0 denotes the winding number with the minimal
vortex energy.

In domain C it is trivially shown that all vortices are unstable to decay into 1-vortices :
E(k) > kE(1), ∀k ≥ k1.

In domain B it is a priori not so easy to see which channels are allowed and depends
on the numerics. In general, the vortices will be unstable to decay in some channels, but it
is not certain that there cannot be stable vortices here. We can comment on special points
which are unstable, that is, one can easily show that E(rk0) > rE(k0), r ∈ Z+, however,
these windings might be larger than k1.

The upshot is to note that for small α and β, there will exist a “fat” (winding > 1) vortex
with a finite winding number k0 which is stable and preferred energetically and above a
certain winding number larger than k0 the vortices will decay. This means that vortices will
attract to some certain finite size and could be detectable in certain kinds of superconductors
and superfluids in 2 dimensional systems. In other words, the vortices are attractive until
they reach a critical size and then from that point they will repel additional fluxes. Hence, it
is type I at first and when flux adds up, it turns into type II, we could denote this behavior a
type III vortex. 1

We explore now an approximate behavior of the function k0(α, β). In Fig. 2.6, we
show the winding number k0 where the vortex has minimal vortex energy per unit flux (see
Fig. 2.5). In the top-most panel is shown k0 as function of β for fixed α = 1/128 and in the

1In non-Abelian non-BPS theories there are more possibilities as the forces in general have dependence
on the internal properties of such systems. Recently, it was shown [121] that such a non-Abelian vortex in an
Extended-Abelian-Higgs theory can have a distance dependent force which turns from attractive to repulsive
at some distance.
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Figure 2.6: The winding number k0 where the vortex has minimal vortex energy per unit flux E .
Top panel: k0 as function of the coupling β for fixed coupling α = 1

128 . For small β (β . 0.05), the
fit shows that k0 scales quite well proportional to 1

β . Note that the potential is such that the Chern-
Simons vacuum becomes unstable for β ≥ 1

3 . Bottom panel: k0 as function of the coupling α for
fixed coupling β = 0.03. For small α (α . 0.02), the fit shows good scaling proportional to α−

11
40 .

The error-bars are simply a reminder that the function k0 ∈ Z.
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Figure 2.7: Vortex energy divided by 2πξk as function of the winding number k, for a vortex with
α = 0.35 and β = 0.03. The couplings are tuned in such away that k0, the winding with minimal
vortex energy per unit flux, is very small (here k0 = 3). Thus the optimal size, energetically, is quite
small, but still bigger than the 1-vortex. A simple calculation shows that all vortices with k > 4 are
unstable to decay.

bottom-most panel, k0 as function of α for fixed β = 0.03. In both figures, we have made a
fit valid for small values of β, α, respectively.

Around the point
(

1
128
, 0.03

)
in (α, β)-space, we can from the fits guess the following

approximate formula, which is only valid for small couplings (as the effect is terminated
when α ∼ αcritical or β ∼ βcritical i.e. k0 becomes equal to one)

k0 ∼ C

α
11
40β

, (2.24)

where the constant is C ∼ 0.22. We have found αcritical and βcritical to be less than one but
of order O(10−1). It could be interesting to see how these functions : αcritical(β), βcritical(α)
behave, but would require a better understanding of the effects kicking in at large couplings.

For phenomenological considerations, it would be interesting to tune k0 to some small
value. As k0 approaches infinitely large values, the superconductor is effectively of type
I and the flux will break the superconducting phase. We expect more than a single point
in (α, β)-space to satisfy this condition, actually a line (region) near the critical border :
α(β) . αcritical(β) or equivalently β(α) . βcritical(α). In Fig. 2.7 is shown such a configu-
ration where we have tuned the parameters as : α = 0.35 and β = 0.03. We think that this
object could be detectable in two dimensional superconductors in the laboratory, at least in
principle.





CHAPTER 3

A large k phase transition

In this Chapter we will study the Maxwell-Chern-Simons theory in order to grasp how
the large k limit of the Chern-Simons vortex is smoothly connected with the large k limit of
the ANO vortex. First we will construct the domain wall and use it to understand a phase
transition at large k in the vortex system.

3.1 Domain wall

Considering a dimensional reduction of the system (1.190), we can obtain the static
domain wall energy. We assume that no field depends on x2 or time x0 and Ax turns out to
vanish in the BPS wall. We thus have

Twall =

∫
R

[
1

2e2
(∂xA0)2 +

1

2e2
(∂xA2)2 +

1

2e2
(∂xφ)2 +

1

2
A2

0|H|2 + |∂xH|2 +
1

2
A2
y|H|2

+
1

2
φ2|H|2 +

e2

4

(
|H|2 − κ√

2
φ− ξ

)2 ]
,

=

∫
R

[ ∣∣∣∣∂xH +
1√
2
φH

∣∣∣∣2 +
1

2e2

(
∂xφ+

e2

√
2

(
|H|2 − κ√

2
φ− ξ

))2

+
1

2e2
(∂x (A0 + Ay))

2 +
1

2
|(A0 + Ay)H|2

− 1√
2
∂x

(
φ|H|2 − κ

2
√

2
φ2 − ξφ

)
− ∂x

(
1

e2
Ay∂xA0 +

κ

4
A2
y

)]
, (3.1)

where the Gauss law has been used. We will now consider a flux analogous to the previous
case of the Chern-Simons wall, i.e. Ay(−∞) = −√2f and Ay(+∞) = 0 and furthermore
∂xA0(−∞) = 0. The wall tension can be calculated from the boundary term

Twall+flux =
ξ2

2κ
+
κf 2

2
. (3.2)

Notice that the tension coincides exactly with that of the Chern-Simons wall (2.2).



70 A large k phase transition

From the tension (3.1) we can read off the BPS equations of motion. First we notice the
triviality of the flux equations which simply imply A0 = −Ay and we have

Ξ = κ∂xχ , (3.3)

∂2
xχ−

κe2

2
∂xχ− ξe2

2
(e2χ − 1) = 0 , (3.4)

where χ ≡ log(|H|/√ξ) and Ξ ≡ −κφ/√2. Let us first look at the limits of the wall.
Taking e→∞ we readily obtain the equation for the Chern-Simons wall (2.1). Taking now
κ→ 0 we obtain the system which is the dimensional reduction of the equation for the ANO
vortex (1.141).

Note that the flux density is f = m
2

. Hence, the vorticity is given in the large flux limit
and is not a free parameter, as in the case of the uncompactified wall. The numerical results
are shown in Fig. 3.1. We set e2 = 2 and start from κ = 1 and take the limit κ → 0. We
observe that the magnetic field crawls inside the wall, i.e. to the side of the symmetric phase.
This is expected. As κ is sent to zero the VEV of Ξ is pushed away to infinity and the ANO
wall vortex emerges. Note that the energy is infinite, unless the wall is compactified on a
circle.

3.2 Interpolation between ANO type and CS type
Let us now consider the vortex system (1.199)-(1.201). It will prove convenient to intro-

duce the following dimensionless parameter

η ≡ mγ

mκ

=

√
ξe(

2ξ
κ

) =
κe

2
√
ξ
, (3.5)

which governs the transition between the pure Maxwell theory (η = 0) and the pure Chern-
Simons theory (η → ∞). For all values of η there exists a topological vortex. We already
know [192], that in the large k limit the Chern-Simons vortex (η → ∞) behaves like a ring
of radius

RCS
V =

κ

ξ
k . (3.6)

The ring is the domain wall that separates the symmetric phase from the Higgs phase. For
a generic Maxwell-Chern-Simons vortex, we can use the same argument of [192] to under-
stand the large k limit. As in the pure Chern-Simons case, we still have a symmetric vacuum
and a Higgs vacuum. We also have a domain wall between the two vacua and, from the an-
alysis of the previous Section, we know that the wall can support a magnetic flux. We can
thus conclude that the large k limit will always be a ring-like structure made of the domain
wall. A stabilization calculation using formula (3.2) gives the correct energy of the vortex.

For the pure ANO vortex, the behavior in the large k limit has a completely different
nature [171, 172]: it becomes a disc with radius

RANO
V =

2√
ξe

√
k , (3.7)
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Figure 3.1: The fields of the Maxwell-Chern-Simons domain wall with corresponding magnetic
field. We set e =

√
2 and in (a) κ = 1, (b) κ = 0.1, (c) κ = 0.01, (d) κ = 0. Notice how the

magnetic field is pushed “inside” the wall vortex. When κ → 0 the VEV of Ξ is pushed away to
infinity and the Coulomb phase can persist inside the wall vortex.

with the magnetic flux uniformly distributed inside. The masses of the system are

mCS =
κe2

2
, mγ =

√
ξe , (3.8)

while the approximate profile of the magnetic field and neutral scalar field read

F12 = −m
2
γ√
2
emCS(r−RV ) , φ =

m2
γ√

2mCS

(
emCS(r−RV ) − 1

)
, (3.9)

and in this regime inside the wall vortex, we have assumed H ' 0.
We now want to understand the transition between these two different regimes. Since we

can interpolate smoothly between pure Chern-Simons and pure Maxwell theory by changing
the parameter η, it must be possible to smoothly interpolate between the disc phase (RV ∝√
k) and the ring (RV ∝ k) phase. We sketch the two different phases in Fig. 3.2.

To construct the phase diagram (η, k) we have to use some intuition and extrapolate
from the previous results of the domain wall with magnetic flux. In the very large k limit,
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Figure 3.2: The profile functions of the vortices in (a) the ANO-disc phase and (b) the Chern-
Simons-ring phase. In the ANO phase the magnetic field is a plateau making up the flux tube. The
field φ is almost zero in this phase. In the Chern-Simons phase the magnetic field will have go to zero
exponentially towards the center of the vortex, where the size of the ring is the inverse Chern-Simons
photon mass m−1

CS.

the vortex always becomes a domain wall-ring. For fixed η, which we will now assume to be
so small that the system is in the ANO phase, we will consider the consequence of increasing
k. As noted, at some point the system will change into the Chern-Simons phase. When k
is sufficiently small, we should compare the Chern-Simons photon mass to the radius of the
vortex in the ANO phase

RANO
V mCS ∼ 1 ⇒ kcritical ' 1

4η2
. (3.10)

At some point when the radius starts to scale like the Chern-Simons vortex, i.e. for in-
creasingly larger k, the radius of the Chern-Simons-like vortex should be compared to the
Chern-Simons photon mass

RCS
V mCS ∼ 1 ⇒ kcritical ' 1

2η2
. (3.11)

As the calculations show, there is a difference of a factor of two, for the two critical winding
numbers, so we expect a smooth transition. Now from the above relations we can observe
the phase transition happening of course as η → ∞ for fixed (small) k, but interestingly it
also happens for fixed (small) η as k → ∞. As η becomes just infinitesimally small, k has
to be huge to observe this effect. In Fig. 3.3 we show a phase diagram indicating with a
shade of gray the phase transition.
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Figure 3.3: A phase diagram for the Maxwell-Chern-Simons vortex. The ANO-type phase and the
CS-type phase can be separated by the curves k = 1/(4η2) and k = 1/(2η2). The transition is a
smooth transition as illustrated by the tone.





Part III

Vortices and lumps
in SO(N) and USp(2M)





CHAPTER 4

Special solutions for non-Abelian vortices

In this Chapter we will study special solutions for non-Abelian BPS vortices constructed
simply by solving the strong condition by means of an Ansatz. By choosing this Ansatz we
can readily characterize solutions in terms of basic group theory and a solution is specified
by the U(1) winding number and the coefficients of weight vectors of the dual group G̃′.
Interestingly this gives a quantization condition for the vortex solutions formally identical
to the well-known one for non-Abelian monopoles due to Goddard-Nuyts-Olive-Weinberg
(GNOW).

4.1 GNOW quantization of non-Abelian vortices
Our task is to find all possible moduli matrices which satisfy the weak condition (1.72).

In general this is not easy. But certain special solutions can be found readily, and each such
solution is characterized by weight vectors of the dual group, and is labeled by a set of
integers νa (a = 1, · · · , rank(G′))

H0(z) = zν1N+νaHa ∈ U(1)C ×G′C , (4.1)

where ν = k/n0 is the U(1) winding number and Ha are the generators of the Cartan
subalgebra of g′. These special solutions satisfy the strong condition (6.15), given below,
with zi = 0. H0 must be holomorphic in z and single-valued, which gives the constraints
for a set of integers νa

(ν1N + νaHa)ll ∈ Z≥0 ∀ l . (4.2)

Suppose that we now consider scalar fields in an r-representation of G′. The constraint is
equivalent to

ν + νaµ
(i)
a ∈ Z≥0 ∀ i , (4.3)

where ~µ(i) = µ
(i)
a (i = 1, 2, · · · , dim(r)) are the weight vectors for the r-representation of

G′. Subtracting pairs of adjacent weight vectors, one arrives at the quantization condition

~ν · ~α ∈ Z , (4.4)
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G′ G̃′

SU(N) SU(N)/ZN

U(N) U(N)
SO(2M) SO(2M)
USp(2M) SO(2M + 1)
SO(2M + 1) USp(2M)

Table 4.1: Some pairs of dual groups

for every root vector α of G′.
Equation (4.4) is formally identical to the well-known Goddard-Nuyts-Olive-Weinberg

(GNOW) quantization condition [204, 205, 206, 207, 208, 209] for the monopoles, and to
the vortex flux quantization rule found in Ref. [210]. There is however a crucial difference
here, as compared to the case of [204, 205, 206, 207, 208, 209] or [210]. Because of an exact
flavor (color-flavor diagonal GC+F) symmetry present here, which is broken by individual
vortex solutions, our vortices possess continuous moduli. As will be seen later, at least
in the local case these moduli are normalizable, and there are no conceptual problems in
their quantization. On the contrary, vortices in Ref. [210] do not have any continuous
modulus, while in the case of “non-Abelian monopoles” [204, 205, 206, 207, 208, 209] these
interpolating modes suffer from the well-known problems of non-normalizability. Another
way the latter difficulty manifests itself is that the naı̈ve “unbroken” group cannot be defined
globally due to a topological obstruction [211, 212, 213, 214, 215, 216] in the monopole
backgrounds.

The solution of the quantization condition (4.4) is that

~̃µ ≡ ~ν/2 , (4.5)

is any of the weight vectors of the dual group of G′. The dual group, denoted as G̃′, is
defined by the dual root vectors [204, 205, 206, 207, 208, 209]

~α∗ =
~α

~α · ~α . (4.6)

We show examples of dual pairs of groupsG′, G̃′ in Table 4.1. Note that (4.3) is stronger than
(4.4), it has to be zero or a positive integer. This positive quantization condition allows for
only a few weight vectors. For concreteness, let us consider scalar fields in the fundamental
representation, and choose a basis where the Cartan generators ofG′ = SO(2M), SO(2M+
1), USp(2M) are given by

Ha = diag
(

0, · · · , 0︸ ︷︷ ︸
a−1

,
1

2
, 0, · · · , 0︸ ︷︷ ︸

M−1

,−1

2
, 0, · · · , 0

)
, (4.7)

with a = 1, · · · ,M . In this basis, special solutions H0 have the form1 for G′ = SO(2M)
and USp(2M)

H
(µ̃1,··· ,µ̃M )
0 = diag

(
zk

+
1 , · · · , zk+

M , zk
−
1 , · · · , zk−M

)
, (4.8)

1 The integers k±a and k here coincide with n±a and n(0), respectively, of Ref. [118].
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while for SO(2M + 1)

H
(µ̃1,··· ,µ̃M )
0 = diag

(
zk

+
1 , · · · , zk+

M , zk
−
1 , · · · , zk−M , zk

)
, (4.9)

where k±a = ν ± µ̃a.
For example, in the cases of G′ = SO(4), USp(4) with a ν = 1/2 vortex, there are four

special solutions with ~̃µ = (1
2
, 1

2
), (1

2
,−1

2
), (−1

2
, 1

2
), (−1

2
,−1

2
)

H
( 1
2
, 1
2

)

0 = diag(z, z, 1, 1) = z
1
2
14+1·H1+1·H2 , (4.10)

H
( 1
2
,− 1

2
)

0 = diag(z, 1, 1, z) = z
1
2
14+1·H1−1·H2 , (4.11)

H
(− 1

2
, 1
2

)

0 = diag(1, z, z, 1) = z
1
2
14−1·H1+1·H2 , (4.12)

H
(− 1

2
,− 1

2
)

0 = diag(1, 1, z, z) = z
1
2
14−1·H1−1·H2 . (4.13)

These four vectors are the same as the weight vectors of two Weyl spinor representations 2⊕
2′ of G̃′ = SO(4) for G′ = SO(4), and the same as those of the Dirac spinor representation
4 of G̃′ = Spin(5) for G′ = USp(4).

The second example is G′ = SO(5) with ν = 1. We have nine special points which
are described by ~̃µ = (0, 0) and (1, 0), (0, 1), (−1, 0), (0,−1) and (1, 1), (1,−1), (−1, 1),
(−1,−1) and thus correspond to

H
(0,0)
0 = diag(z, z, z, z, z) = z1·15+0·H1+0·H2 , (4.14)

H
(1,0)
0 = diag(z2, z, 1, z, z) = z1·15+2·H1+0·H2 , (4.15)

H
(0,1)
0 = diag(z, z2, z, 1, z) = z1·15+0·H1+2·H2 , (4.16)

H
(−1,0)
0 = diag(1, z, z2, z, z) = z1·15−2·H1+0·H2 , (4.17)

H
(0,−1)
0 = diag(z, 1, z, z2, z) = z1·15+0·H1−2·H2 , (4.18)

H
(1,1)
0 = diag(z2, z2, 1, 1, z) = z1·15+2·H1+2·H2 , (4.19)

H
(1,−1)
0 = diag(z2, 1, 1, z2, z) = z1·15+2·H1−2·H2 , (4.20)

H
(−1,1)
0 = diag(1, z2, z2, 1, z) = z1·15−2·H1+2·H2 , (4.21)

H
(−1,−1)
0 = diag(1, 1, z2, z2, z) = z1·15−2·H1−2·H2 . (4.22)

These nine vectors are the same as the weight vectors of the vector representation 4 and
the antisymmetric representation 5 of the dual group G̃′ = USp(4). The weight vectors
corresponding to the k = 1 vortex in various gauge groups are given in Fig. 4.1.

4.2 Z2 parity
As discussed in Ref. [118], the vortices in G′ = SO(N) theory are characterized by the

first homotopy group

π1

(
SO(N)× U(1)

Zn0

)
= Z× Z2 , n0 =

{
1 (N odd) ,
2 (N even) ,

(4.23)
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Figure 4.1: The special points for the k = 1 vortex.



4.2 Z2 parity 81

µ̃1 µ̃2 QZ2
1
2

1
2

+1
1
2
−1

2
−1

−1
2

1
2
−1

−1
2
−1

2
+1

µ̃1 µ̃2 QZ2

0 0 +1
±{1 0} −1
±{1 ±1} +1

Table 4.2: k = 1, SO(4) vortices (left), k = 1, SO(5) or k = 2, SO(4) (right).

µ̃1 µ̃2 µ̃3 QZ2

±{1
2

1
2

1
2
} ±1

±{1
2

1
2
−1

2
} ∓1

µ̃1 µ̃2 µ̃3 QZ2

0 0 0 −1
±{1 0 0} +1
±{1 1 0} −1
±{1 −1 0} −1
±{1 1 1} +1
±{−1 1 1} +1

Table 4.3: k = 1, SO(6) cases (left), k = 1, SO(7) or k = 2 SO(6) (right).

while those of G′ = USp(2M) theory correspond to non-trivial elements of

π1

(
USp(2M)× U(1)

Z2

)
= Z . (4.24)

The vortices in G′ = SO(N) carry a Z2 charge in addition to the usual additive vortex
charges. The Z2 charge can be seen from the dual weight vector ~̃µ. As a simple example,
let us consider the case of SO(4). The dual weight vectors are listed in Table 4.2. Let
us compare two states: namely (µ̃1, µ̃2) = (1/2, 1/2) and (µ̃1, µ̃2) = (1/2,−1/2). The
difference between them is δ(µ̃1, µ̃2) = (0, 1): thus one of them can be obtained from the
other by a 2π rotation in the (24)-plane in SO(4). As a path from unity to a 2π rotation is a
non-contractible loop, they have different Z2 charges.

On the other hand, the difference between (µ̃1, µ̃2) = (1/2, 1/2) and (µ̃1, µ̃2) = (−1/2,
−1/2) is δ(µ̃1, µ̃2) = (1, 1), hence this is homotopic to the trivial element of Z2. Therefore,
the vortices can be classified by the Z2-parity, QZ2 = ±1. In Figs. 4.1 and 5.3, the dark
points correspond to vortices with QZ2 = +1 while the empty circles correspond to those
with QZ2 = −1.

The Z2 parity of each special point is defined, in general, as follows:

QZ2(k
+
i , k

−
i ) = (+)

P
i k

+
i × (−)

P
i k
−
i = (−)

P
i k
−
i , (4.25)

or equivalently in terms of the weight vectors:

QZ2

(
H

(µ̃i,...,µ̃M )
0

)
= (−)νM−

P
i µ̃i . (4.26)





CHAPTER 5

Local vortices and orientational moduli

In this Chapter we study local non-Abelian vortices in detail leaving the analyses of
semi-local vortices for Chap. 6. The local non-Abelian vortices carry non-Abelian charges
under the color-flavor symmetry group. The corresponding moduli parameters are referred
to as the internal orientations (or orientational modes) of the vortices. We study the different
patches describing the vortex solutions, connectedness properties and finally the transition
functions between the various patches. Our study will be systematic for k = 1, 2 for G′ =
SO(2M), USp(2M) and k = 1 for G′ = SO(2M + 1) (which though has the complexity
as k = 2 for G′ = SO(2M)).

5.1 The strong condition
Let us consider a single local vortex. The strong condition is

HT
0 (z)JH0(z) = (z − z0)

2
n0 J . (5.1)

The parameter z0 represents the vortex center and is a part of the vortex moduli. Fixing z0 =
0, the solutions to the above condition still possess orientational modes. The moduli space
of the orientations should be studied through the solutions to this condition, in principle.
However, once a moduli matrix satisfying Eq. (5.1) has been found, other solutions are
readily obtained by acting on it with the color-flavor symmetry transformations G′C+F:

H ′0(z) ≡ H0(z)U , U ∈ G′C+F . (5.2)

However, H0(z) is defined only modulo V -equivalence, therefore if there exists a V -trans-
formation such that

V (z)H ′0(z) = H0(z) , V (z) ∈ G′C , (5.3)

then H ′0(z) and H0(z) should be regarded as physically the same configuration. Hence, in
order to identify the orientational moduli, one needs to identify the flavor rotations which
cannot be undone by any V -transformation. In the case of k = 1 local vortices with G′ =
SO(2M), USp(2M), this discussion is sufficient to describe the moduli spaces completely.
In the SO(2M + 1) case, and for higher-winding vortices, however, this is not the case. It
is here that the moduli matrix formalism shows its power.
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5.2 The k = 1 local vortex for G′ = SO(2M), USp(2M)

The strong condition (5.1) with n0 = 2 is satisfied by all special moduli matrices given
in Eq. (4.8). For simplicity, let us start with the moduli matrix described by the dual weight
vector ~̃µ = (1

2
, 1

2
, · · · , 1

2
), i.e.

H
( 1
2
, 1
2
,··· , 1

2
)

0 (z) = diag( z, · · · , z︸ ︷︷ ︸
M

, 1, · · · , 1︸ ︷︷ ︸
M

) . (5.4)

The color-flavor rotation G′C+F generates other moduli matrices in a G′C+F/U(M)-orbit. It
is obvious that the action of the U(M) subgroup of G′ = SO(2M) or G′ = USp(2M)

U0 =

(
uT

u−1

)
∈ G′C+F , u ∈ U(M) , (5.5)

can be undone by a V -transformation (1.54) due to the fact that

H
( 1
2
,··· , 1

2
)

0 U0 = U0H
( 1
2
,··· , 1

2
)

0 ' H
( 1
2
,··· , 1

2
)

0 . (5.6)

Therefore, we find the orientational moduli as parametrizing the following spaces [6]

Mori =
G′C+F

U(M)C+F

=
SO(2M)

U(M)
or

USp(2M)

U(M)
, (5.7)

both of which are Hermitian symmetric spaces [217, 160, 218]. The real dimension of the
moduli spaces is M(2M ∓ 1)−M2 + 2 = M(M ∓ 1) + 2. Where the last “+2” correspond
to the position of the vortex.

In order to see explicitly G′C+F/U(M), let us take the following element of G′

U =

(
1M −b†A,S

1M

)
√

1M + b†A,SbA,S (√
1M + bA,S b

†
A,S

)−1

(1M
bA,S 1M

)
, (5.8)

where bS (bA) is an arbitrary M -by-M symmetric (antisymmetric)1 matrix for the SO(2M)
(USp(2M)) case. The first two matrices in U can be eliminated by V -transformations, such

that the action of U brings the moduli matrix H
( 1
2
,··· , 1

2
)

0 onto the following form

H
( 1
2
,··· , 1

2
)

0 (z)U
V−→ H

( 1
2
,··· , 1

2
)

0 (z; bA,S) ≡
(
z1M
bA,S 1M

)
=

(
z1M

1M

)(
1M
bA,S 1M

)
. (5.9)

We denote the patch described by the above moduli matrix the (1
2
, · · · , 1

2
)-patch of the mani-

fold G′C+F/U(M). The complex parameters in the M ×M matrix bA,S are the (local) in-
homogeneous coordinates of Mori. Indeed, the moduli matrix has M(M∓1)

2
+ 1 complex

1Similar symbols will be used below to indicate a symmetric or antisymmetric constant matrix.
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parameters which is in fact the dimension of the moduli space as will be demonstrated in
Sec. 6.3. This in turn implies that, in the present case, the moduli space for the local vortex
is entirely generated by a G′ orbit, except for the position moduli.

By a similar argument we find 2M patches, starting from the special points ~̃µ = (±1
2
,

· · · , ±1
2
) given in Eq. (4.8). Indeed, this can easily be done by means of permutations, e.g.

H
(
0

r︷ ︸︸ ︷
− 1

2
,··· ,− 1

2
,

M−r︷ ︸︸ ︷
1
2
,··· , 1

2
)(z; bA,S) = P−1

r H
( 1
2
,··· , 1

2
)

0 (z; bA,S)Pr , (5.10)

where the permutation matrix is

Pr ≡


0r ε1r

1M−r 0M−r
1r 0r

0M−r 1M−r

 , PT
r JPr = J . (5.11)

One can easily check that the constraint[
P−1
r H

( 1
2
,··· , 1

2
)

0 Pr

]T

J
[
P−1
r H

( 1
2
,··· , 1

2
)

0 Pr

]
= zJ ,

is indeed satisfied. The determinant of the permutation matrices is

detPr = (−ε)r . (5.12)

Note that Pr is an element of G′ iff detPr = 1.
The problem now is to find the transition functions among the 2M patches just found.

As in the case of U(N) vortices [102], the transition functions between the (1
2
, · · · , 1

2
)-patch

and the (−1
2
, · · · ,−1

2︸ ︷︷ ︸
r

, 1
2
, · · · , 1

2︸ ︷︷ ︸
M−r

)-patch are obtained by using the V -transformation (1.54):

H
(
0

r︷ ︸︸ ︷
− 1

2
,··· ,− 1

2
,

M−r︷ ︸︸ ︷
1
2
,··· , 1

2
)(z; b′A,S) = V (z)H

( 1
2
,··· , 1

2
)

0 (z; bA,S) . (5.13)

By solving the above equation, one obtains the transition functions between the two patches
having detPr = 1 as

b′1 = ε b−1
1 , b′2 = b−1

1 b2 , b′3 = b3 + ε bT
2 b
−1
1 b2 , (5.14)

where bA,S is decomposed to an r-by-r matrix b1, an r-by-(M−r) matrix b2 and an (M−r)-
by-(M − r) matrix b3 defined as follows

bA,S =

(
b1 b2

−ε bT
2 b3

)
, bT

1,3 = −ε b1,3 , (5.15)

and similarly for b′i. The technical details will be postponed till the next Section. This
derivation of the quotient space G′/U(M) in the moduli matrix formalism, can be related
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to the ordinary derivation with 2M dimensional vector spaces which we call the orientation
vectors. See Sec. 5.3 for the details.

As shown in Eq. (5.12), detPr is always +1 in the case of G′ = USp(2M), while
both +1 and −1 are possible for G′ = SO(2M). Hence, all 2M patches can be connected
for G′ = USp(2M). However, two patches which are related by the permutation Pr with
detPr = −1 are disconnected since such a permutation is not an element of SO(2M) but of
O(2M) and thus there does not exist any transition function (V -transformation). Therefore,
we conclude that the patches for G′ = SO(2M) are divided into two disconnected parts
according to the sign of detPr = ±1. In summary, the moduli space of the k = 1 vortex is

MUSp(2M) = C×Mori
USp(2M) = C× USp(2M)

U(M)
, (5.16)

MSO(2M) = C×Mori
SO(2M) =

(
C× SO(2M)

U(M)

)
+

∪
(

C× SO(2M)

U(M)

)
−
, (5.17)

with C being the position moduli. The doubling of the moduli space in the SO(N) case
reflects the presence of a Z2 topological charge for the vortex (see Eq. (4.23)), so that
Mori

SO(2M),+ ∩Mori
SO(2M),− = ∅.

Furthermore, the structure of these moduli spaces seems to be consistent with the GNOW
duality [204, 205, 206, 207, 208, 209]. The dual of USp(2M) is the Spin(2M + 1)
group, with a single spinor representation of multiplicity, 2M . In the case of SO(2M),
its GNOW dual is Spin(2M), where the smallest irreducible representations are the two
spinor representations of chirality ±, each with multiplicity 2M−1. Actually, the quotient
SO(2M)/U(M) is just a space for a pure spinor in 2M dimensions [219]. Finally, by em-
bedding the vortex theory into an underlying theory with a larger gauge group which breaks
to the group SO(2M) or to USp(2M), what is found here for the vortex moduli and their
transformation properties can be translated into the properties of the monopoles appearing
at the ends, through the homotopy matching argument [103, 105]. These aspects will be
further discussed in a separate article [220].

We have introduced the dual weight diagram ~̃µ to represent the special moduli matrices
(representative vortex solutions), H(µ̃1,µ̃2,··· ,µ̃M )

0 (z) in Sec. 4. Now we reinterpret them in a
slightly different way. The lattice points of the diagram can be thought of as a representation
of the patches of the space, where the origin of the local coordinates are just given by
these special points. For example, in the case of G′ = SO(2M), USp(2M), the lattice
point ~̃µ = (1

2
, · · · , 1

2
) represents the patch given in Eq. (5.9)2. Next we link the lattice

points painted with the same color, namely the patches related by the permutation Pr with
detPr = +1. The structure of the moduli space discussed above can easily be read off from
the dual weight diagram obtained this way.

The dual lattices formed by special points representatives of connected patches are equal
to lattices of irreducible representations of the dual group. On the contrary, two discon-
nected parts of the moduli space (seeMSO(2M) in Eq. (5.17)) nicely correspond to distinct
irreducible representations (two spinor representations of opposite chiralities). In the case

2This interpretation gives an intrinsic meaning to the special points . Furthermore, their number is related
(in many cases equal) to the Euler character of the moduli space.
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Figure 5.1: The moduli spaces of the k = 1 local vortex.

of composite vortices, we will find irreducible representations obtained by tensor composi-
tions of the fundamental ones. This picture holds for all the explicit cases, we could check
(low rank groups), and is an important hint of a “semi-classical” emergence of the GNOW
duality from the vortex side.

5.2.1 Examples: G′ = SO(2), SO(4), SO(6) and G′ = USp(2), USp(4)

Let us illustrate the structure of the moduli spaces in some simple cases, see Fig. 5.1. The
U(1)× SO(2) ' U(1)+ × U(1)− theory has two types of ANO vortices. One type is char-
acterized by π1(U(1)+) and the other of π1(U(1)−). They are described by the following
moduli matrices

H
( 1
2

)

0 =

(
z − z1 0

0 1

)
, H

(− 1
2

)

0 =

(
1 0
0 z − z2

)
. (5.18)

Because USp(2) ' SU(2), the G′ = USp(2) vortex is indeed identical to the U(2)
vortex which has been well-studied in the literature. The orientational moduli are CP 1 '
SU(2)
U(1)

. Note that the special configurations H
(− 1

2
)

0 = diag(1, z) and H
( 1
2

)

0 = diag(z, 1) are
fixed points of the U(1) ⊂ SU(2) group generated by σ3: U(1) = diag(eiθ, e−iθ). One can

move from H
(− 1

2
)

0 to H
( 1
2

)

0 by using SU(2)/U(1) and vice versa [102]:(
1 0
0 z

)
︸ ︷︷ ︸
H

(− 1
2 )

0

(
1 a
0 1

)
︸ ︷︷ ︸
SU(2)/U(1)

=

(
0 1/a′

−a′ z

)
︸ ︷︷ ︸
V -transformation

(
z 0
0 1

)
︸ ︷︷ ︸
H

( 1
2 )

0

(
1 0
a′ 1

)
︸ ︷︷ ︸
SU(2)/U(1)

, with aa′ = 1 . (5.19)

The corresponding dual weight diagram, shown in the bottom-left of Fig. 5.1, represents
the fundamental multiplet of the dual SU(2) group. It can be also interpreted as the toric
diagram of CP 1.

Next consider G′ = SO(4) vortices. We have two different vortices which are charac-
terized by the π1(SO(4)) = Z2-parity. The orientational moduli again turn out to be

CP 1 ' SO(4)

U(2)
' SU(2)× SU(2)

U(1)× SU(2)
' SU(2)

U(1)
. (5.20)
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For instance, we find a similar relation between H
(− 1

2
,− 1

2
)

0 and H
( 1
2
, 1
2

)

0(
12

z12

)
︸ ︷︷ ︸
H

(− 1
2 ,−

1
2 )

0

(
12 bA

12

)
︸ ︷︷ ︸
SO(4)/U(2)

=

(
b′A
−1

−b′A z12

)
︸ ︷︷ ︸
V -transformation

(
z12

12

)
︸ ︷︷ ︸

H
( 1
2 ,

1
2 )

0

(
12

b′A 12

)
︸ ︷︷ ︸
SO(4)/U(2)

, (5.21)

with bAb
′
A = 12. The two special points (the two sites of the dual weight diagram) are

again fixed points of the U(1) symmetry, thus the dual weight diagram can be thought of
as the toric diagram for CP 1. There are two CP 1’s in this case, see Fig. 5.1. Furthermore,
the diagram can alternatively be thought of as representing the reducible (1

2
,0) ⊕ (0, 1

2
)

representation of the spinor Spin(4), which is the dual of SO(4).
The diagram for the G′ = USp(4) case consists of a single structure where all the 4

points are connected

Mori
USp(4) =

USp(4)

U(2)
. (5.22)

This is consistent with the interpretation of the diagram in Fig. 5.1 as being the weight
lattice of the irreducible spinor representation 4 of SO(5), which is indeed the GNOW-dual
of USp(4) [204, 205, 206, 207, 208, 209].

The last example is G′ = SO(6) (see Fig. 5.2). This is another neat example where
the orientational moduli are a well-known manifold and its dual weight diagram can be
identified with a toric diagram. The orientational moduli space is

Mori
SO(6) =

SO(6)

U(3)
' SU(4)

U(1)× SU(3)
' CP 3 . (5.23)

The corresponding dual weight diagram is shown in Fig. 5.2. There are two CP 3’s, similarly
to the case of G′ = SO(4). From the toric diagram, one can easily find the CP 1 and CP 2

subspaces which appear as edges and faces, respectively. Again these two separate parts of
the moduli spaces can be interpreted as the two spinor representations, 4 ⊕ 4∗, of opposite
chiralities of the dual group

Spin(6) ∼ SU(4) .

5.3 The orientation vectors
We have considered the moduli matrix per se and studied the orientational moduli space

of the local non-Abelian vortices. Our result for G′ = SO(2M), USp(2M) is the quotient
space given in Eq. (5.7). These spaces are well-known Hermitian symmetric spaces [217,
160, 218]. They can be embedded in the complex Grassmann space

G2M,M ' SU(2M)

SU(M)× SU(M)× U(1)
, (5.24)

which is described by a 2M ×M complex matrix via a GL(M,C) equivalence relation

Gr2M,M ' Φ//GL(M,C) = {Φ ∼ ΦV} , V ∈ GL(M,C) . (5.25)
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Figure 5.2: The moduli spaces of the k = 1 local vortex in G′ = SO(6).

where the action of GL(M,C) is free. In other words we require the rank of Φ to be M .
The embedding is defined by the constraint [160, 218]

ΦTJΦ = 0 , (5.26)

where J is given by Eq. (1.32).
We can relate the matrix Φ to the orientation of the local vortex as follows. Notice that

the moduli matrix decreases its rank by M at the “vortex center”, z = z0. The orientational
moduli can be extracted as M linearly independent 2M -vectors orthogonal to H0(z = z0)
[100, 136]

H0(z = z0) ~φi = 0 , (i = 1, 2, · · · ,M) . (5.27)

Let us thus define a 2M ×M orientational matrix by putting ~φi (i = 1, 2, . . .) all together as

Φ =
(
~φ1, ~φ2, · · · , ~φM

)
, H0(z = z0) Φ = 0 . (5.28)

As Φ′ given by Φ′ ≡ ΦV with V ∈ GL(M,C) – which is just a change of the basis – satisfies
the same equation (5.27), Φ′ represents the same physical configuration as Φ. This leads to
the equivalence relation (5.25) and to the complex Grassmannian Gr2M,M , as claimed. The
isotropic condition (5.26) can be found as follows. The strong condition (5.1) is written as

(H0Φ)TJ(H0Φ) = zΦTJΦ . (5.29)

Taking the derivative of this with respect to z, one obtains

(∂H0Φ)TJH0Φ + (H0Φ)TJ∂H0Φ = ΦTJΦ . (5.30)

Evaluating this at z = z0 one is led to the constraint (5.26).
The advantage of considering Φ instead of H0(z) is simplification of the calculation.

In the rest of this Subsection, one can completely forget about the previous argument of
the moduli matrix. All the results derived from H0 can be reproduced by Φ alone. Let
us illustrate this by taking two examples: SO(4) and USp(4). Then Φ is a 4 × 2 matrix
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satisfying ΦTJΦ = 0. Since Φ has rank 2, we can generally bring Φ onto the following
form by using GL(2,C)

Φ
( 1
2
, 1
2

)

SO(4) =


1 0
0 1
0 −b
b 0

 , Φ
( 1
2
, 1
2

)

USp(4) =


1 0
0 1
a b
b c

 . (5.31)

Of course, three other patches {Φ(− 1
2
, 1
2

),Φ( 1
2
,− 1

2
), Φ(− 1

2
,− 1

2
)} are obtained by fixing GL(2,C)

in such a way that the {2-3 rows, 1-4 rows, 3-4 rows} become the unit matrix, respectively.
The transition functions among them are given through GL(2,C). In the case of G′ =

USp(4), the transition functions from the (1
2
, 1

2
)-patch to the {(−1

2
, 1

2
),(1

2
,−1

2
), (−1

2
,−1

2
)}-

patches are given by

V( 1
2
, 1
2

)→(− 1
2
, 1
2

)

USp(4) =

(
0 1
a b

)−1

, V( 1
2
, 1
2

)→( 1
2
,− 1

2
)

USp(4) =

(
1 0
b c

)−1

, V( 1
2
, 1
2

)→(− 1
2
,− 1

2
)

USp(4) =

(
a b
b c

)−1

.

(5.32)

When the inverse of V does not exist, such points are not covered by two patches but only by
one of them. In the case of G′ = SO(2M), neither V(− 1

2
, 1
2

)→( 1
2
, 1
2

) nor V( 1
2
, 1
2

)→(− 1
2
, 1
2

) has an
inverse. Thus the (1

2
, 1

2
)-patch is disconnected from the (−1

2
, 1

2
)-patch and the (1

2
,−1

2
)-patch.

It connects only with the (−1
2
,−1

2
)-patch and the transition function is given by

V( 1
2
, 1
2

)→(− 1
2
,− 1

2
)

SO(4) =

(
0 −b
b 0

)−1

. (5.33)

Similarly, the (−1
2
, 1

2
)-patch and the (1

2
,−1

2
)-patch are connected. This is a reinterpretation

of the Z2-parity of the local vortex in the model withG′ = SO(4), see Fig. 5.1. An extension
of this to the local vortex in G′ = SO(2M) is straightforward.

5.4 The k = 2 local vortex for G′ = SO(2M), USp(2M)

In the case of G′ = SO(2M), USp(2M) theories, the strong condition for the k = 2
vortices located at z = z1 and z = z2 is of the form

H0(z)TJH0(z) = P (z)J , P (z) ≡ (z − z1)(z − z2) , (5.34)

which can equivalently be parametrized as

P (z) = (z − z0)2 − δ , z0 =
z1 + z2

2
, δ =

(
z1 − z2

2

)2

. (5.35)

Here z1 and z2 stand for the vortex positions which are where the scalar field becomes zero,
while z0 and δ are the center of mass and the relative position (separation) of two vortices,
respectively. Several examples of dual weight diagrams are given in Fig. 5.3.
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Figure 5.3: The special points for the k = 2 vortex.

We will now proceed to the doubly-wound (k = 2) vortices in U(1)×G′ gauge theories,
with G′ = SO(2M) or USp(2M). The SU(N)C+F-orbit structure of the moduli space
of k vortices in U(N) gauge theory was studied in Ref. [101] using the Kähler quotient
construction of Hanany and Tong [9]. Here we study the orbit structure of the moduli space
of k = 2 vortices for G′ = SO(2M) or USp(2M) more systematically by using the moduli
matrix formalism. Before going into the detail, let us recall the properties of the k = 2 ANO
vortices in the usual Abelian-Higgs model. They can also be studied using the moduli matrix
which, in this case is simply a holomorphic function in z, i.e. a second-order polynomial:

HANO
0 (z) = z2 − αz + β = (z − z1)(z − z2) , (5.36)

with α = z1 + z2 and β = z1z2. Since these two vortices are indeed identical, we cannot
distinguish them. In fact, the moduli matrix is invariant under the exchange of z1 and z2.
Thus the corresponding moduli space is the symmetric product of C:

Mk=2
ANO =

C× C
S2

' C2/Z2 . (5.37)

There is a nice property of the moduli matrix for the local vortices. Suppose H i
0 satisfies

the strong condition for ki local vortices, namely

(H i
0)TJH i

0 = Pi(z)J , (5.38)
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with a polynomial function of the ki-th power. Then the product of two matrices H(i,j)
0 ≡

H i
0H

j
0 automatically satisfies the strong condition for k = ki + kj local vortices:

(H
(i,j)
0 )TJH

(i,j)
0 = Pi(z)Pj(z)J . (5.39)

In this way we can construct the moduli matrices for the higher winding number vortices
from those with the lower winding numbers, which was found in U(N) vortices [111, 105].
This feature implies that the moduli space for separated local vortices can be constructed as
a symmetric product of copies of those of a single local vortex:

Mk
sep '

(C×Mori)
k

Sk

(5.40)

The consideration above is valid when the component vortices are separated even for small
vortex separations. When two or more vortex axes coalesce, the symmetric product de-
generates, and the topological structure of the moduli space undergoes a change. Thus the
coincident case must be treated more carefully. We shall study the case of two coincident
vortices in detail in the next Section.

Our study of the moduli matrix in the present work is complete up to k = 2 vortices
(k = 1 for odd SO groups). The problem of a complete classification of the moduli matrix
for the higher winding number (k ≥ 3) is left for future work.

The product of moduli matrices, especially for the G′ = SO(N) case, gives us a natural
understanding in the following sense. The single G′ = SO(N) vortex has a Z2-parity
+1 or −1. They are physically distinct, hence the k = 2 configuration is expected to be
classified into three categories by the Z2-parity of the component vortex as (Q

(1)
Z2
, Q

(2)
Z2

) =

(+1,+1), (+1,−1), (−1,−1). The total Z2-parity of the configurations with (Q
(1)
Z2
, Q

(2)
Z2

) =

(+1,+1), (−1,−1) is +1 while that of (Q
(1)
Z2
, Q

(2)
Z2

) = (+1,−1) is −1. Therefore, the
former and the latter are disconnected. An interesting question is whether (Q

(1)
Z2
, Q

(2)
Z2

) =
(+1,+1) and (−1,−1) are connected or not. The naı̈ve answer would be yes, because the
two solutions represent two equivalent objects from the topological point of view. However,
the true answer, as we will show, is subtler, and is different for the local and semi-local
cases. For the latter case, the two moduli spaces are smoothly connected and in fact are
the same space. More interestingly, in the local case they represent two different spaces
which intersect at some submanifold. As we shall see, this result is compatible with the
interpretation that weight lattices formed by connected special points are in correspondence
with irreducible representations of the dual group3 [118].

The patch structure for the k = 2 local vortices in generic G′ = SO(2M) or G′ =
USp(2M) theories is rather complex. In this Subsection, we just present the result without
details. The result will be discussed again when we shall consider the generic configurations
satisfying the weak condition (1.72) in Sec. 6. The moduli matrix in a generic patch takes

3The fact that there is no topology which can explain this disconnection somehow enforces our interpreta-
tion in terms of the dual group.
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the form

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z) =


P (z)1r 0 0 0
B1(z) (z − z0)1M−r + Γ11 0 Γ12

A(z) C1 1r C2

B2(z) Γ21 0 (z − z0)1M−r + Γ22

 ,

(5.41)

A(z) = a1;A,S z + a0;A,S + λS,A , (5.42)(
B1(z)
B2(z)

)
= − ((z − z0)12(M−r) + Γ

)
J2(M−r)

(
CT

1

CT
2

)
, (5.43)

Γ ≡
(

Γ11 Γ12

Γ21 Γ22

)
, (5.44)

where ai;A,S (i = 0, 1) is an r × r constant (anti-)symmetric matrix, Ci is an r × (M − r)
constant matrix and we have defined

λS,A ≡ −1

2
(C1, C2) J2(M−r)

(
CT

1

CT
2

)
, J2(M−r) ≡

(
1M−r

ε1M−r

)
. (5.45)

The strong condition is now translated into the following form

ΓTJ2(M−r) + J2(M−r)Γ = 0 , Γ2 = δ 12(M−r) , (Tr Γ = 0) . (5.46)

Solutions to this condition for separated vortices are discussed in App. B. It is a hard task
to study the moduli space collecting all the patches, for generic SO(2M) and USp(2M). A
complete analysis of the moduli space in several cases will be given below.

Some of the moduli parameters in Eq. (5.41) are the Nambu-Goldstone (NG) modes
associated with global symmetry breaking and the rest are interpreted as so-called quasi-NG
modes [221, 222, 223, 224, 225, 226]. The former is, for instance, the overall orientation of
the two vortices and the center of mass. The relative separation between two local vortices
(C) and some of the relative orientational modes are typical examples of the latter. For two
coincident vortices the situation is subtler, but in general there will still be a set of NG modes
generated by the G′C+F symmetry, while the remaining modes are quasi-NG modes. As we
will see in the following, the number of the quasi-NG modes is

[
M
2

]
or
[
M
2

]−1 for SO(2M)
and M for USp(2M), which was actually difficult to find without using the moduli matrix
formalism.

5.4.1 G′C+F-orbits for coincident vortices
Let us now specialize to the case of the k = 2 co-axial (axially symmetric) vortices. The

details of the analysis can be found in App. C. Consider a special moduli matrix

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 ) = diag

(
z2, · · · , z2︸ ︷︷ ︸

r

, z, · · · , z︸ ︷︷ ︸
M−r

, 1, · · · , 1︸ ︷︷ ︸
r

, z, · · · , z︸ ︷︷ ︸
M−r

)
. (5.47)
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Clearly, this vortex breaks the color-flavor symmetry as

SO(2M)→ U(r)× SO(2(M − r)) , USp(2M)→ U(r)× USp(2(M − r)) . (5.48)

Thus depending on r (r = 0, 1, · · · ,M), we have M + 1 different G′C+F orbits. Each
orbit reflects the NG modes associated with the symmetry breaking. The different orbits
are connected by the quasi-NG modes which are unrelated to symmetry. The total space
is stratified with G′C+F-orbits as leaves. To see this, let us consider the following moduli
matrix (for G′ = SO(2M)):

H0 =


z21M−2

z12 iσ2λ
1M−2

z12

 = V −1


z21M−2

z212

1M−2

−iσ2λ
−1z 12

 ,

V =


1M−2

z12 −iσ2λ
1M−2

−iσ2λ
−1 02

 ∈ SO(2M) . (5.49)

We can always take λ to be non-negative and real R>0 by means of the color-flavor rotation

H0 → U−1H0U , U =


1M−2

a12

1M−2

a−112

 ∈ SO(2M) . (5.50)

In two limits λ → 0 and λ → ∞, the moduli matrix (5.49) reduces to the special matrix
(5.47) with r = M − 2 and r = M , respectively. The orbit with intermediate values
0 < λ <∞ corresponds to the symmetry breaking pattern

SO(2M)

U(M − 2)× USp(2)
. (5.51)

In fact, the moduli matrix (5.49) is left invariant under the USp(2) ∈ SO(2M)C+F transfor-
mations

U =


1M−2

g−1

1M−2

gT

 ∈ SO(2M) , gT(iσ2)g = iσ2 . (5.52)

Therefore, the quasi-NG mode λ connects two different SO(2M)C+F orbits:

SO(2M)

U(M)
× Z2

λ→0←− R>0 × SO(2M)

U(M − 2)× USp(2)
× Z2

λ→∞−→ SO(2M)

U(M − 2)× SO(4)
,

(5.53)

where the Z2 factor indicates a permutation, P−1H0P with P ∈ O(2M)/SO(2M). This
permutation does not belong to the SO(2M)C+F symmetry, nonetheless it generates a new
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moduli matrix solution. We thus see, as explained before, how the moduli space of co-
incident vortices of positive chirality is generically made of two disconnected parts. If
M − r 6= 0, such a permutation acts trivially or can be pulled back by an SO(2M) rotation
on H0. At these special points the two copies coalesce. Nonetheless we must interpret the
two spaces as defining two different composite states of vortices: (+1,+1) and a (−1,−1).
This interpretation is fully consistent if one studies interactions in the range of validity of
the moduli space approximation [40]. It is easy to realize that, in this approximation, the
chirality of each of the component vortices is conserved: two composite states of vortices
(+1,+1) and (−1,−1) do not interact, even if their trajectories in the moduli space pass
through an intersection submanifold4

At the intersection, the dimension of the manifold always reduces by

[dim R>0 − dim USp(2)]− (−dim SO(4)) = 4 .

This can easily be extended to the following moduli matrix, with t, α ∈ Z≥0

H0 =



z21t
z212α

z1M−t−2α

0 1t
zΛ̃ 12α

0 z1M−t−2α

 , (5.54)

Λ̃ =

λ̃1J̃2p̃1
. . .

λ̃sJ̃2p̃s

 , (5.55)

where J̃2p̃i is the invariant tensor of USp(2p̃i) and

α =
s∑
i=1

p̃i , t+ 2α ≤M , 0 < λ̃i < λ̃i+1 . (5.56)

An arbitrary patch (5.41) with δ = 0 in the SO(2M) case, can be brought onto the above
form as explained in App. C. The set of numbers (t, s, p̃i) and the quasi-NG modes λi are, of
course, independent of r which indicates the patch which we take as a starting point. Note
that this is invariant with respect to the group

∏s
i=1 USp(2p̃i) ∈ SO(2M)C+F

U = block-diag
(
1t, g

−1
2p̃1
, · · · , g−1

2p̃s
,1M−t−2α,1t, g

T
2p̃1
, · · · , gT

2p̃s ,1M−t−2α

)
, (5.57)

with gT
2p̃i
J̃2p̃ig2p̃i = J̃2p̃i . Therefore, the local structure of the SO(2M)-orbit has the form

Rs
>0 ×

O(2M)

U(t)×∏s
i=1 USp(2p̃i)×O(2u)

, with t+ u+ 2
s∑
i=1

p̃i = M . (5.58)

4The question if (or how) these vortices interact beyond the moduli space approximation, and in particular
at the quantum level, is an interesting open question.
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When we take the limit λ̃1 → 0, a subgroup U(t) × USp(2p̃1) of the isotropy group gets
enhanced to U(t + 2p̃1) and the orbit shrinks, thus the local structure around the new orbit
is given by changing the indices in Eq. (5.58) as follows

(s, t, u; p̃1, p̃2, · · · , p̃s) λ̃1→0→ (s′, t′, u′; p̃′i) = (s− 1, t+ 2p̃1, u; p̃2, · · · , p̃s) . (5.59)

In the opposite limit where λ̃s →∞, another subgroup USp(2p̃s)×SO(2u) of the isotropy
group is getting enlarged to SO(2u + 4p̃s), hence the local structure around this new orbit
is obtained by

(s, t, u; p̃1, · · · , p̃s−1, p̃s)
λ̃s→∞→ (s′′, t′′, u′′; p̃′′i ) = (s− 1, t, u+ 2p̃s; p̃1, · · · , p̃s−1) .

(5.60)

By choosing various t, p̃i and taking the limits λ̃i → 0,∞, we can reach all the points of the
moduli space. However, since these transitions are always induced by the 2p̃i × 2p̃i matrix
J̃2p̃i , the patches with only an even number of z2’s in the diagonal element are connected.
Analogously, the patches with an odd number of z2’s are mutually connected. Nevertheless,
the former and latter remain disconnected and this of course is just a consequence of the
different chiralities (Z2 topological factor).

For instance, by inserting a minimal extension, i.e. the following piece, λ̃J̃2, the special
orbits in Eq. (5.47) can sequentially be shifted as

diag(z2, · · · , z2, z2, z2, 1, · · · , 1, 1, 1)→ diag(z2, · · · , z2, z, z, 1, · · · , 1, z, z)→ · · ·
→ diag(z, · · · , z, z · · · , z) .

However, the connection pattern depends on whether SO(2M) = SO(4m) or SO(4m+ 2),
see Fig. 5.4. At a generic point (p̃i = 1, s = m) where the color-flavor symmetry is
maximally broken the corresponding moduli spaces can locally be written as

Mk=2, ori
SO(4m),+ = Rm

>0 ×
SO(4m)

USp(2)m
× Z2 , (5.61)

Mk=2, ori
SO(4m),− = Rm−1

>0 ×
SO(4m)

U(1)× USp(2)m−1 × SO(2)
, (5.62)

Mk=2, ori
SO(4m+2),+ = Rm

>0 ×
SO(4m+ 2)

U(1)× USp(2)m
× Z2 , (5.63)

Mk=2, ori
SO(4m+2),− = Rm

>0 ×
SO(4m+ 2)

USp(2)m × SO(2)
. (5.64)

The two copies of the moduli space, in the case of positive chirality, intersect at some sub-
manifold if M 6= 1. The dimensions of these moduli spaces are summarized as

dimC

[
Mk=2, ori

SO(2M),±
]

= M2 −M . (5.65)

Taking the vortex position into account, the complex dimension of the full moduli space is
M2 −M + 2 which is nothing but twice the dimension of the k = 1 moduli space.
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SO(4m)
U(2m)

SO(4m)
U(2m−2)×SO(4)

SO(4m)
U(2m−4)×SO(8)

SO(4m)
U(2m−2)×USp(2)

SO(4m)
U(2m−4)×USp(2)×SO(4)

SO(4m)
U(2)×SO(4m−4)

1

r
2m 2m− 2 2m− 4 2 0

2m− 1 2m− 3 3 1

SO(4m)
USp(2)×SO(4m−4)

SO(4m)
U(2m−1)×SO(2)

SO(4m)
U(2m−3)×SO(6)

SO(4m)
U(3)×SO(4m−6)

SO(4m)
U(1)×SO(4m−2)

SO(2M) = SO(4m)

SO(4m+2)
U(2m+1)

SO(4m+2)
U(2m−1)×SO(4)

SO(4m+2)
U(2m−1)×USp(2)

SO(4m+2)
U(3)×SO(4m−6)

r
2m + 1 2m− 1 2m− 3 3 1

2m 2m− 2 2 0

SO(4m+2)
U(1)×USp(2)×SO(4m−6)

SO(4m+2)
U(2m)×SO(2)

SO(4m+2)
U(2m−2)×SO(6)

SO(4m+2)
U(2)×SO(4m−2) 1

SO(2M) = SO(4m + 2)

SO(4m+2)
U(1)×SO(4m−2)

SO(4m)
U(1)×USp(2)×SO(4m−6)

SO(4m)
U(2m−3)×USp(2)×SO(2)

SO(4m+2)
U(2m−2)×USp(2)×SO(2)

SO(4m+2)
USp(2)×SO(4m−2)

Figure 5.4: Sequences of the k = 2 vortices in SO(4m) and SO(4m + 2). The sites (circles)
correspond to the special orbits of Eq. (5.49) and the links connecting them denote the insertion of
the minimal pieces λ̃iJ̃2 such as in Eq. (5.55).
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In the case of vortices in USp(2M) theory, we can bring a generic moduli matrix onto
the following form

H0 =



z21t
z21β

z1M−t−β
0 1t

zΛ̃ 1β
0 z1M−t−β

 , (5.66)

Λ̃ =

λ̃11p̃1
. . .

λ̃s1p̃s

 , (5.67)

with

β =
s∑
i=1

p̃i, t+ β ≤M, 0 < λ̃i < λ̃i+1 . (5.68)

This matrix is invariant under [
∏s

i=1 O(p̃i)] ∈ USp(2M)

U = block-diag
(
1t, g

−1
p̃1
, · · · , g−1

p̃s
,1M−t−β,1t, gT

p̃1
, · · · , gT

p̃s ,1M−t−β
)
, (5.69)

with gT
p̃i
gp̃i = 1p̃i . Therefore, the local structure around the USp(2M) orbit is given by

Rs
>0 ×

USp(2M)

U(t)× [
∏s

i=1O(p̃i)]× USp(2u)
, with t+ u+

s∑
i=1

p̃i = M . (5.70)

In the limit λ̃1 → 0, the local structures of the orbit changes according to

(s, t, u; p̃1, p̃2, · · · , p̃s) λ̃1→0→ (s′, t′, u′; p̃′i) = (s− 1, t+ p̃1, u; p̃2, · · · , p̃s) . (5.71)

On the other hand, in the opposite limit λ̃s →∞, the local structure of the orbit becomes

(s, t, u; p̃1, · · · , p̃s−1, p̃s)
λ̃s→∞→ (s′′, t′′, u′′; p̃′′i ) = (s− 1, t, u+ p̃s; p̃1, · · · , p̃s−1) . (5.72)

Since the minimal insertion is a real positive number λ̃, all the special orbits are con-
nected, contrary to the case of the SO(2M) vortices. This is consistent with the fact that
there is no Z2-parity in the USp(2M) case.

At the most generic point where 0 < λ̃1 < · · · < λ̃M , the color-flavor symmetry is
broken down to the discrete subgroup ZM

2 ,

RM
>0 ×

USp(2M)

ZM
2

. (5.73)

We can read off the dimensions of moduli space for the k = 2 co-axial local USp(2M)
vortices from this

dimC

[
Mk=2,ori

USp(2M)

]
=
M

2
+

2M(2M + 1)

4
= M2 +M . (5.74)
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1−1 0

(0, 2) (1, 1) (2, 0)

1−1 0

SO(2) USp(2) ≃ SU(2)

Figure 5.5: The k = 2 local vortices for G′ = SO(2), USp(2).

5.4.2 Examples: G′ = SO(2), SO(4) and G′ = USp(2), USp(4)

k = 2 local vortices for G′ = SO(2), USp(2)

Let us first consider the G′ = SO(2) theory. Although there is no Z2-parity due to the
fact that π1(SO(2)) = Z, there are nevertheless two distinct classes of vortices characterized
by π1(U(1)+) and π1(U(1)−) with U(1) × SO(2) ' U(1)+ × U(1)−. Thus there are
three possible k = 2 configurations. (π1(U(1)+), π1(U(1)−)) = {(2, 0), (0, 2), (1, 1)}, see
Fig. 5.5. The corresponding moduli matrices are given by

H
(+1)
0 =

(
P (z) 0

0 1

)
, H

(−1)
0 =

(
1 0
0 P (z)

)
, H

(0)
0 =

(
z − z1 0

0 z − z2

)
. (5.75)

Clearly, z1 and z2 are not distinguishable in the first two matrices while they are in the third
matrix. This reflects the fact that the configuration consists of two identical vortices and two
different vortices, in the two respective cases. Therefore, the moduli space is made of three
disconnected pieces

Mk=2
SO(2) =M(2,0)

SO(2) ∪M(0,2)
SO(2) ∪M(1,1)

SO(2) , (5.76)

where these spaces are defined by

M(2,0)
SO(2) =

(
M(1,0)

SO(2) ×M(1,0)
SO(2)

)
/S2 = (C× C)/S2 = C2/Z2 , (5.77)

M(0,2)
SO(2) =

(
M(0,1)

SO(2) ×M(0,1)
SO(2)

)
/S2 = (C× C)/S2 = C2/Z2 , (5.78)

M(1,1)
SO(2) =M(1,0)

SO(2) ×M(0,1)
SO(2) = C2 . (5.79)

The Z2 factor gives rise to crucial differences in the interactions between these vortices.
For instance, a head-on collision of two identical local vortices inM(2,0)

SO(2) orM(0,2)
SO(2) leads

to a 90 degree scattering, while such a collision of the two different local vortices living
inM(1,1)

SO(2) would be transparent, which yields opposite results for the reconnection of two
colliding vortex-strings [112]. Again, this result is a consequence of the fact that vortices
with different chiralities must be considered as different, and non-interacting objects.

The next example is G′ = USp(2). As was noted earlier the vortices in the G′ =
USp(2) theory are the ones thoroughly studied due to USp(2) = SU(2). The moduli
spaces including the patches and the transition functions for the k = 2 vortices, in terms of
the moduli matrix, are given in Ref. [111, 105]. We shall not repeat the discussion here. The
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(1, 1)

(1,−1)(−1,−1)

(−1, 1)
(0, 1)

(1, 0)

(0,−1)

(−1, 0)

Z2-parity: +1 Z2-parity: −1

(0, 0)
(0, 0)′

CP 1

CP 1

Figure 5.6: The patches of the k = 2 local vortices in G′ = SO(4).

result is [111, 105]

Mk=2,separated
SU(2) ' (C× CP 1)2/S2,

Mk=2,coincident
SU(2) ' C×WCP 2

(2,1,1) ' C× CP 2/Z2 . (5.80)

The dual weight diagram for this case is shown in Fig. 5.5.

k = 2 local vortices for G′ = SO(4)

Let us now consider G′ = SO(4). As can be seen from Fig. 5.3, there are 9 special
points in the entire moduli space. Five out of them have QZ2 = +1, and the other four have
QZ2 = −1.

Note that the isomorphism SO(4) ' [SU(2)+×SU(2)−]/Z2 can indeed be complexified
as

SO(4)C ' [SL(2,C)+ × SL(2,C)−]/Z2 ,

[U(1)× SO(4)]C/Z2 ' [GL(2,C)+ ×GL(2,C)−]/C∗ . (5.81)

In fact, an arbitrary matrix X satisfying XTJX ∝ J can always be rewritten as

X = σ−1(A⊗B)σ = f+(A)f−(B) = f−(B)f+(A) , (5.82)

f+(A) = σ−1(A⊗ 12)σ , f−(B) = σ−1(12 ⊗B)σ , σ =

12

1
−1

 ,

where A,B ∈ GL(2,C) and f± define maps from GL(2,C)± to [U(1)× SO(4)]C/Z2. The
elements of GL(2,C)±, f±(A), are related by the odd parity permutation

P−1f±(A)P = f∓(A) , P =


1

1
1

1

 , (detP = −1) . (5.83)

Fixed points of this permutation are given by A ∝ 12. This complexified isomorphism
tells us that a moduli matrix for G′ = SO(4) obeying the strong condition can always be
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decomposed to a couple of moduli matrices for G′ = SU(2) which have been well-studied.
This fact simplifies the analysis of the moduli space in the present case. For instance, f±
are maps from the moduli matrix for k = 1, G′ = SU(2) to those of k = 1, SO(4) with the
parity QZ2 = ±1, since f+(diag(z, 1)) = diag(z, z, 1, 1).

Consider first theQZ2 = +1 patches. There are corresponding patches of the four special
points ~̃µ = (±1,±1), (±1,∓1). The (1, 1)-patch is explicitly given by the moduli matrix

H
(1,1)
0 =


z2 + b1z + b2

z2 + b1z + b2

−b3z − b4 1
b3z + b4 1

 , (5.84)

with (z− z1)(z− z2) = z2 + b1z+ b2. The rest of the patches H(1,−1)
0 , H

(−1,1)
0 , H

(−1,−1)
0 can

be obtained by appropriate permutations of H(1,1)
0 . Note that the special point ~̃µ = (0, 0) of

the moduli space has two different vicinities which we call the (0, 0)+-patch and the (0, 0)−-
patch, that is, the point ~̃µ = (0, 0) is on an intersection of two submanifolds. In fact, we find
that the two different matrices

H
(0,0)+
0 =


z − a1 a4

z − a1 −a4

a3 z − a2

−a3 z − a2

 , (5.85)

H
(0,0)−
0 =


z − a′1 a′4
−a′3 z − a′2

z − a′2 a′3
−a′4 z − a′1

 , (5.86)

with

(z − z1)(z − z2) = (z − a1)(z − a2) + a3a4 = (z − a′1)(z − a′2) + a′3a
′
4 , (5.87)

are connected at the points where a3 = a4 = a′3 = a′4 = 0 and a1 = a2 = a′1 = a′2 only.
As mentioned, these concrete expressions for the patches can be obtained by the maps from
those of the G′ = SU(2) case as follows

H
(0,0)+
0 = f+(h(1,1)(ai)) , H

(1,1)
0 = f+(h(2,0)(bi)) , H

(−1,−1)
0 = f+(h(0,2)(ci)) , (5.88)

H
(0,0)−
0 = f−(h(1,1)(a′i)) , H

(1,−1)
0 = f−(h(2,0)(b′i)) , H

(−1,1)
0 = f−(h(0,2)(c′i)) , (5.89)

where h(∗,∗)(ai) are the moduli matrices for G′ = SU(2), k = 2,

h(1,1)(ai) =

(
z − a1 a4

−a3 z − a2

)
,

h(2,0)(bi) =

(
z2 + b1z + b2 0
b3z + b4 1

)
, h(0,2)(ci) =

(
1 c3z + c4

0 z2 + c1z + c2

)
. (5.90)

The transition functions among these patches are given by the V -transformation (1.54) with
V (z) = f+(V+(z))f−(V−(z)) where V±(z) are those of G′ = SU(2), i.e. they are exactly
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the same as in the SU(2) case [100, 136, 111]. Now, connectedness of the patches is man-
ifest since we know the moduli space for G′ = SU(2) is indeed simply connected. The
three patches in Eq. (5.88) compose a submanifold Mk=2

SO(4),++ and Eq. (5.89) composes
Mk=2

SO(4),−−. The moduli space with QZ2 = +1, therefore, can be expressed as

Mk=2
SO(4),+ 'Mk=2

SO(4),++ ∪Mk=2
SO(4),−− , Mk=2

SO(4),++ 'Mk=2
SO(4),−− 'Mk=2

SU(2) , (5.91)

whereMk=2
SU(2) is shown in Eq. (5.80). As we have shown, these two submanifolds intersect

at the fixed point of the permutation (5.83) in the (0, 0)+-patch and the (0, 0)−-patch

Mk=2
SO(4),++ ∩Mk=2

SO(4),−− = C , (5.92)

where C describes the position of the two coincident local vortices, a1 = a2 = a′1 = a′2.
Note that by comparing the right panel of Fig. 5.5 and the left panel of Fig. 5.6 (with a ±45
degrees rotation), it is easily seen that the k = 2, U(2) moduli spaces are embedded in that
of the SO(4) theory.

Let us next study the transition functions among the QZ2 = −1 patches, (1, 0)-(0, 1)-
(−1, 0)-(0,−1). The general form of the moduli matrix in the (1, 0)-patch is:

H
(1,0)
0 = f+(h(1,0)(z1, d1))f−(h(1,0)(z2, d2)) (5.93)

=


(z − z1)(z − z2)
−d2(z − z1) z − z1

−d1d2 d1 1 d2

−d1(z − z2) z − z2

 , (5.94)

while the other three are

H
(0,1)
0 = f+(h(1,0)(z1, d1))f−(h(0,1)(z2, e2)) ,

H
(0,−1)
0 = f+(h(0,1)(z1, e1))f−(h(1,0)(z2, d2)) ,

H
(−1,0)
0 = f+(h(0,1)(z1, e1))f−(h(0,1)(z2, e2)) , (5.95)

where h(1,0) and h(0,1) are the two patches ofMk=1
SU(2) ' C× CP 1,

h(1,0)(z0, b) =

(
z − z0

−b 1

)
, h(0,1)(z0, b

′) =

(
1 −b′

z − z0

)
. (5.96)

Hence, we can conclude that the moduli space of the k = 2 local vortices with QZ2 = −1 is

Mk=2
SO(4),− ' (Mk=1

SU(2))
2 ' (C× CP 1

)2
. (5.97)

This can be also understood from the dual weight diagrams in Figs. 5.1 and 5.6.
The difference between the moduli spaces in Eq. (5.91) and Eq. (5.97) can be understood

as follows. Recall that there exist two kinds of minimal vortices in G′ = SO(2M) theory,
namely one for SU(2)+ with QZ2 = +1 and another for SU(2)− with QZ2 = −1, see
Fig. 5.1. We can then choose two vortices with either the same or a different Z2-parity in
composing the k = 2 vortex. Two vortices with the same parity can be regarded as physically
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k = 1

k = 3

k = 2

k = 4

k = 5

Figure 5.7: The dual weight lattice for k = 1, 2, 3, 4, 5 vortices in G′ = SO(4).

identical, while those with different parities are distinct. In the case of two identical vortices,
the moduli space should be a symmetric product, namely given by Eq. (5.91). Since the total
parity Qk=2

Z2
= +1 can be made of (Q

(1)
Z2
, Q

(2)
Z2

) = (+1,+1) and (−1,−1), one finds two
copies, as in Eq. (5.91). In contrast, there is only one possibility for Qk=2

Z2
= −1, namely

(Q
(1)
Z2
, Q

(2)
Z2

) = (+1,−1). The dual weight diagrams are thus quite useful. As a further
illustration, let us show the diagrams for some higher-winding vortices with G′ = SO(4) in
Fig. 5.7, without going into any detail.

k = 2 local vortices for G′ = USp(4)

Consider now the k = 2 local vortices for G′ = USp(4). Since the moduli for a single
(k = 1) local vortex requires four parameters, we expect that the k = 2 configurations need
eight. The moduli matrices including the special points as the origin are of the form

H
(0,0)
0 = (z − z0)14 + A , (5.98)

H
(1,0)
0 =


P (z) 0 0 0

b3b6 − b4(z − z0 + b5) z − z0 + b5 0 b6

b1z + b2 b3 1 b4

−b4b7 + b3(z − z0 − b5) b7 0 z − z0 − b5

 , (5.99)

with P (z) = (z − z0)2 − δ = (z − z0)2 − (b2
5 + b6b7) and

H
(1,1)
0 =


P (z) 0 0 0

0 P (z) 0 0
c3z + c4 c5z + c6 1 0
c5z + c6 c7z + c8 0 1

 , (5.100)

where P (z) = z2 + c1z + c2. All other patches are connected and can be obtained by
suitable permutations. The moduli matrices H(1,1)

0 , H(1,0) depend on eight free parameters,
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as expected. The strong condition is already solved by them, and thus these patches are C8.
The moduli matrix H(0,0)

0 has however a more complicated form. The strong condition turns
out to be:

ATJ + JA = 0 , A2 = δ14 . (5.101)

The first condition tells us that A takes a value in the algebra of USp(4), so

A =


−a12−a34

2
a35 a13 a15

−a45 −a12+a34

2
a15 −a14

a24 a25
a12−a34

2
a45

a25 −a23 −a35
a12+a34

2

 . (5.102)

Now A has 10 parameters. The second set of constraints comes from imposing the Plücker
condition on aij = −aji (i, j = 1, 2, 3, 4, 5)

aijakl − aikajl + ailajk = 0 . (5.103)

Note that the number of linearly independent conditions is three, hence seven parameters out
of ten in the matrix A are linearly independent. Those together with z0, yield eight degrees
of freedom, indeed as expected. In this patch, δ depends on aij as follows

δ =
1

4
(a12 − a34)2 + a13a24 − a35a45 + a15a25 . (5.104)

Thus the patch H(0,0) is expressed as

{H(0,0)
0 } ' C× {B|B : 2× 5 matrix}

SL(2,C)
' C×

(
C∗ o

{B|B : 2× 5 matrix}
GL(2,C)

)
' C×

(
C o

{B|B : 2× 5 matrix of rank 2}
GL(2,C)

)
= C× (C oGr5,2) . (5.105)

The last term in the bracket is a cone whose base space is a U(1) fibration of Gr5,2. The
tip of this cone corresponds to the origin of the patch, where aij = 0, which is thus a
conical singularity in the moduli space. Notice that this is a true singularity of the classical
metric on the moduli space. It comes out by applying the strong condition on a smooth
set of coordinates [112]. It is an interesting open problem how this singularity affects the
interactions of vortices. The transition functions between these patches are easily obtained,
for instance, by requiring that V (z) = H(1,1)(H1,0)−1 be regular with respect to z

c1 = −2z0 , c2 = z2
0 − b2

5 − b6b7 ,

c3 = b1 +
b2

4

b6

, c4 = b2 − 1

b6

(b3b4b6 − b2
4(b5 − z0)) ,

c5 = −b4

b6

, c6 = b3 − b4

b6

(b5 − z0) ,

c7 =
1

b6

, c8 =
1

b6

(b5 − z0) . (5.106)

The parameters in H(1,0) are transformed to aij = B1iB2j −B2iB1j of H(0,0) as

B ' 1√
b1

(
1 b2

3 − b1b7 0 −b2 − z0b1 + b3b4 + b1b5 −b3

0 −b2 − z0b1 − b3b4 − b1b5 1 −b2
4 − b1b6 b4

)
. (5.107)
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Figure 5.8: Comparison between the single (minimum-winding) vortices in G′ = SO(4) and G′ =
SO(5) theories.

5.5 The k = 1 local vortex for G′ = SO(2M + 1)

Let us now consider the vortex solutions of the G′ = SO(2M + 1) theory. The strong
condition for the k = 1 local vortex positioned at the origin inG′ = SO(2M+1) is given by
Eq. (5.1) with n0 = 1. It is very similar to the condition Eq. (5.34) for the k = 2 coincident
vortices (z1 = z2 = 0) in G′ = SO(2M)

HT
0 JH0 = z2J . (5.108)

This implies that the complexity of a single local SO(2M + 1) vortex is almost the same as
in the case of the k = 2 co-axial SO(2M) vortices. Indeed, the corresponding dual weight
diagrams, see Figs. 4.1 and 5.3, for instance, are the same.

If however we restrict ourselves to the case of the minimal vortex, there is a startling
difference between the case of SO(2M) and that of SO(2M + 1). Consider the dual weight
diagrams in these two types of theories. In the case of the SO(2M) theory, all the weight
vectors have the same length |~̃µ|2 = M/4, whereas those for the SO(2M + 1) local vortices
have different lengths |~̃µ|2 from 0 to M , see Fig. 5.8 for SO(4) and SO(5). The M − 1
dimensional sphere represents an orbit ofG′C+F = SO(2M) orG′C+F = SO(2M+1) which
is nothing but the internal orientation moduli. In the case ofG′ = SO(2M), the single vortex
has only one orbit, hence the moduli space consists of the position C and the broken color-
flavor symmetry SO(2M)/U(M). On the other hand, in the case of G′ = SO(2M + 1),
there exist multiple orbits corresponding to the NG modes, and furthermore the quasi-NG
modes connecting them. For concreteness, let us consider the following moduli matrix

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z) = diag

(
z2, · · · , z2︸ ︷︷ ︸

r

, z, · · · , z︸ ︷︷ ︸
M−r

, 1, · · · , 1︸ ︷︷ ︸
r

, z, · · · , z︸ ︷︷ ︸
M−r

, z
)
, (5.109)

where r takes on integer values from 0 to M . We now act with the color-flavor symmetry
G′C+F = SO(2M + 1) on the moduli matrix from the right. Hence, the U(r) subgroup in
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SO(2M + 1) can be absorbed by the V -transformation (1.54):

U0 =


g−1

1M−r
gT

1M−r
1

 ∈ U(r) ⊂ SO(2M + 1) , g ∈ U(r) . (5.110)

The other subgroup SO(2(M − r) + 1) ⊂ SO(2M + 1) can be also absorbed by a V -
transformation. Thus the orbit including the special point (5.109) is [118]

Mr
ori =

SO(2M + 1)

U(r)× SO(2(M − r) + 1)
. (5.111)

The orbit continuously connects the special points corresponding to the dual weight vectors
of the same lengths, see Fig. 5.8. Although the internal moduli spaces (5.111) with different
r’s are not connected by the action of SO(2M+1); these are indeed connected by quasi-NG
modes.

The complete moduli space for the k = 1, SO(2M + 1) vortex is very similar to that of
k = 2 co-axial SO(2M) vortices which have been studied in Sec. 5.4.1. A generic solution
to the strong condition (5.108) is given by

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z) =


(z − z0)21r 0 0 0
B1(z) (z − z0)1M−r + Γ11 0 Γ12

A(z) C1 1r C2

B2(z) Γ21 0 (z − z0)1M−r+1 + Γ22

 ,

(5.112)

A(z) ≡ a1;A z + a0;A + λS , (5.113)(
B1(z)
B2(z)

)
= − ((z − z0)12(M−r)+1 + Γ

)
J2(M−r)+1

(
CT

1

CT
2

)
, (5.114)

Γ ≡
(

Γ11 Γ12

Γ21 Γ22

)
, (5.115)

where ai;A (i = 0, 1) are r × r constant anti-symmetric matrices, C1 is an r × (M − r)
constant matrix, C2 is an r × (M − r + 1) constant matrix, and we have defined

λS ≡ −1

2
(C1, C2) J2(M−r)+1

(
CT

1

CT
2

)
, J2(M−r)+1 ≡

 1M−r
1M−r

1

 . (5.116)

The strong condition is now translated into the following form

ΓTJ2(M−r)+1 + J2(M−r)+1Γ = 0 , Γ2 = 0 . (5.117)

All moduli parameters are included in ai;A, Ci,Γ. As in the case of k = 2 co-axial G′ =
SO(2M) vortices (see App. C), a0;A and Ci can be removed by an appropriate color-flavor
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rotation and Γ satisfying the strong condition (5.117) can be written as (up to SO(2M +
1)C+F rotations)

Γ '


Λ

0M−r−2γ

02γ

0M−r−2γ

0

 , (5.118)

Λ ≡ iσ2 ⊗ diag
(
λ11p1 , · · · , λq1pq

)
, (5.119)

with λi > λi+1 > 0 and 2γ (< 2(M − r) + 1) being the rank of Γ (γ =
∑q

i=1 pi). By
making use of the V -transformation and the SO(2M + 1)C+F symmetry, we finally obtain
the following moduli matrix

H0 =



z21r−2α 0 0 0 0 0 0 0 0
0 z212α 0 0 0 0 0 0 0
0 0 z212γ 0 0 0 0 0 0
0 0 0 z1M−r−2γ 0 0 0 0 0

0 0 0 0 1r−2α 0 0 0 0
0 Λ′ z 0 0 0 12α 0 0 0
0 0 Λ−1z 0 0 0 12γ 0 0
0 0 0 0 0 0 0 z1M−r−2γ 0

0 0 0 0 0 0 0 0 z


,

(5.120)

where we have diagonalized a1;A as

a1;A = uΛ′uT , Λ′ ≡ iσ2 ⊗ diag
(
λ′11p′1 , · · · , λ′q′1p′q′

)
, u ∈ U(2α) , (5.121)

with 2α being the rank of a1;A and 2α = 2
∑q′

i=1 p
′
i. Let us now rearrange the eigenvalues

{λ−1
i , λ′i} as

diag(Λ′,Λ−1)→ iσ2 ⊗ diag
(
λ̃11p̃1 , · · · , λ̃s1p̃s

)
, λ̃a > λ̃a+1 > 0 , (5.122)

and redefine t ≡ r − 2α, u ≡M − r − 2γ with the constraint:

s, t, u ∈ Z≥0 , p̃i ∈ Z>0 , t+ u+ 2
s∑
i=1

p̃i = M , (5.123)

such that the r-dependence in the form of Eq. (5.120) disappears. We conclude that the
moduli space of vortices is (apart from the center of mass position):

Mk=1,ori
SO(2M+1) =

⋃
{t,u,p̃i|Eq. (5.123)}

Rs
>0 ×Ot,u,p̃i , (5.124)

Ot,u,p̃i =
SO(2M + 1)

U(t)× SO(2u+ 1)×∏s
a=1 USp(2p̃a)

. (5.125)
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Note that there does not appear any Z2 factor contrary to the SO(2M) case since

P = diag(1, · · · , 1,−1) ∈ O(2M + 1)/SO(2M + 1) ,

acts trivially on H0 in Eq. (5.120). The special orbits in Eq. (5.111) are obtained simply by
choosing s = 0. A sequence of the moduli space is given in Fig. 5.9.

At the most generic points, the moduli spaces are locally of the form

Mk=1,ori
SO(4m+1),+ = Rm

>0 ×
SO(4m+ 1)

USp(2)m
, (5.126)

Mk=1,ori
SO(4m+1),− = Rm−1

>0 ×
SO(4m+ 1)

U(1)× USp(2)m−1 × SO(3)
, (5.127)

Mk=1,ori
SO(4m+3),+ = Rm

>0 ×
SO(4m+ 3)

U(1)× USp(2)m
, (5.128)

Mk=1,ori
SO(4m+3),− = Rm

>0 ×
SO(4m+ 3)

USp(2)m × SO(3)
. (5.129)

The dimensions of the moduli spaces are then summarized as

dimC

[
Mk=1,ori

SO(2M+1),+

]
= M2 , dimC

[
Mk=1,ori

SO(2M+1),−
]

= M2 − 1 . (5.130)

5.5.1 Examples: G′ = SO(3), SO(5)

k = 1 local vortex for G′ = SO(3)

Let us discuss the simplest example, viz. G′ = SO(3). In this model there are two
patches having QZ2 = +1. The moduli matrices take the respective forms

H
(1)
0 = f3(h(1,0)(0, a)) =

 z2 0 0

−a2 1
√

2a

−√2az 0 z

 , H
(−1)
0 = f3(h(0,1)(0, b)) . (5.131)

where h(∗,∗)(z0, a) are the two patches (5.96) ofMk=1
SU(2) and the map f3 is defined by

f3 : A =

(
c d
e f

)
∈ GL(2,C)→ f3(A) =

 c2 −d2
√

2cd

−e2 f 2 −√2ef√
2ce −√2df cf + de

 , (5.132)

and expresses the isomorphism GL(2,C)/Z2 ' [U(1)× SO(3)]C. On the other hand, there
exists just a single patch with QZ2 = −1. This “patch” actually contains only a point

H
(0)
0 = f3(

√
z12) = z13 . (5.133)

This vortex does not break the color-flavor symmetry G′C+F = SO(3): it is an Abelian
vortex i.e. not having any orientational moduli. Hence, the moduli spacesMk=1

SO(3),± are

Mk=1
SO(3),+ 'Mk=1

SU(2) ' C× CP 1 , Mk=1
SO(3),− ' C . (5.134)
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Figure 5.9: Sequences of the k = 1 vortices for SO(4m+ 1) and for SO(4m+ 3) theories.

1−1 0 1−1 0 1−1 0

CP 1

≃ (CP 1)2/S2

k = 2, SO(2) k = 2, USp(2) k = 1, SO(3)

Figure 5.10: k = 1, SO(3) and k = 2; SO(2), USp(2).
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Note that f3 always maps the moduli matrix of G′ = SU(2) to that of G′ = SO(3) with
QZ2 = +1.

We have seen very similar dual weight diagrams for k = 2, SO(2), USp(2) and k = 1,
SO(3) vortices. All of them consist of three sites on a straight line. However, when the
connectedness is taken into account, they are quite different, see Fig. 5.10.

The three points are isolated in the SO(2) case while they are all connected in the
USp(2) case. In the case of SO(3), they split into two diagrams. One is a singlet and
the other has two sites mutually connected, which describes CP 1.

k = 1 local vortex for G′ = SO(5)

Finally, we move on to the second simplest case of odd SO vortices: G′ = SO(5). Let
us first list all the patches, starting with those having QZ2 = +1:

H
(0,0)
0 = z15 + A , (5.135)

H
(1,1)
0 =


z2 0 0 0 0
0 z2 0 0 0

−c2
3 −c1z + c2 − c3c4 1 0

√
2c3

c1z − c2 − c3c4 −c2
4 0 1

√
2c4

−√2c3z −√2c4z 0 0 z

 , (5.136)

where

A =


−a1a2 − a3a4 −a2

4 0 a2
1

√
2a1a4

a2
3 −a1a2 + a3a4 −a2

1 0 −√2a1a3

0 a2
2 a1a2 + a3a4 −a2

3

√
2a2a3

−a2
2 0 a2

4 a1a2 − a3a4

√
2a2a4

−√2a2a3 −√2a2a4 −√2a1a4

√
2a1a3 0

 .

(5.137)

The patches H(1,−1)
0 , H(−1,1)

0 and H(−1,−1)
0 can be obtained from H

(1,1)
0 by the permutations

(5.11). This means that the four patches {H(1,1)
0 , H

(1,−1)
0 , H

(−1,1)
0 , H

(−1,−1)
0 } are on an SO(5)

orbit and they are certainly connected. By the general discussion in the previous Section,
we know that also H(0,0) and all the other four patches are connected. This can be seen
explicitly by studying the transition functions among all these patches:

H
(1,1)
0 = V (1,1),(0,0)H

(0,0)
0 , (5.138)

V (1,1),(0,0) =


z + c2+c3c4

c1

c24
c1

0 − 1
c1
−
√

2c4
c1

− c23
c1

z + c2−c3c4
c1

1
c1

0
√

2c3
c1

0 −c1 0 0 0
c1 0 0 0 0

−√2c3 −√2c4 0 0 1

 ,

{
a1 = ± 1√

c1

ai = ± ci√
c1
,

(5.139)

where i = 2, 3, 4 and the same sign has to be chosen for all the transition functions. This
means that the moduli space for the minimal vortex with QZ2 = +1 in G′ = SO(5) is

Mk=1
SO(5),+ = C×WCP 4

(2,1,1,1,1) ' C× CP 4/Z2 , (5.140)



5.5 The k = 1 local vortex for G′ = SO(2M + 1) 111

where the subscript (2, 1, 1, 1, 1) denotes the U(1)C charges. The weighted complex projec-
tive space WCP 4

(2,1,1,1,1) is defined by the following equivalence relation among five com-
plex parameters φi (i.e. the homogeneous coordinates)

(φ1, φ2, φ3, φ4, φ5) ∼ (λ2φ1, λφ2, λφ3, λφ4, λφ5) , λ ∈ C∗ . (5.141)

On the other hand, the patches corresponding to QZ2 = −1 take the form

H
(1,0)
0 =


z2 0 0 0 0
−b1z z 0 0 0

−b1b2 − b2
3 b2 1 b1

√
2b3

−b2z 0 0 z 0

−√2b3z 0 0 0 z

 . (5.142)

The remaining patches H(−1,0)
0 , H(0,1)

0 and H(0,−1)
0 are obtained by permutations (5.11) from

H
(1,0)
0 . Since all of them are on an SO(5) orbit, the moduli space of the k = 1 vortices with

QZ2 = −1 is

Mk=1
SO(5),− = C× SO(5)

U(1)× SO(3)
'Mk=1

USp(4) = C× USp(4)

U(2)
. (5.143)

The following V -transformation from the (1, 0)-patch to the (−1, 0)-patch is

H(−1,0)(z) = V (−1,0),(1,0)(z)H(1,0)(z) , (5.144)

V (−1,0),(1,0) =


0 0 −1

2
Ξ 0 0

0 c′2

Ξ
a′z −2a′2

Ξ
−2a′c′

Ξ

− 2
Ξ
−2b′z

Ξ
z2 −2a′z

Ξ
−2c′z

Ξ

0 −2b′2

Ξ
b′z c′2

Ξ
−2b′c′

Ξ

0 −2b′c′

Ξ
c′z −2a′c′

Ξ
1− 2c′2

Ξ

 , (5.145)

Ξ ≡ 2a′b′ + c′2 . (5.146)

The transition functions are as follows

a = −2a′

Ξ
, b = −2b′

Ξ
, c =

2c′

Ξ
. (5.147)





CHAPTER 6

Semi-local vortices

The structure of the moduli spaces turns out to be considerably richer in the theories
with G′ = SO(N) and G′ = USp(2M) than those of the U(N) theories. We find that
vortices are generally of the semi-local type, with power-like tails in their profile functions
even in the case with minimal matter content sufficient for having the full Higgs phase
with the special color-flavor locked vacuum. The classical moduli spaces will be divided
into topological sectors by the Z2 charge, which corresponds to non-trivial π1(G′). These
sectors are simply disconnected topologically. Otherwise, all other parts of the moduli space
are connected by V -transformations and transition functions which will be studied in detail
for G′ = SO(2M) and for G′ = USp(2M) with k = 1, 2 and G′ = SO(2M + 1) with
k = 1.

6.1 Properties of semi-local vortices
We now turn to the more general type of solutions, by relaxing the strong condition

(6.15) and obtain the so-called weak condition, which has already been stated in Chap. 1.
For G′ = SU(N) the condition in terms of the moduli matrix is

detH0(z) = zk +O (zk−1
)
, (6.1)

while in the case of G′ = SO(2M) or G′ = USp(2M) it is

HT
0 (z)JH0(z) = zk +O (zk−1

)
, (6.2)

and for G′ = SO(2M + 1) it is instead

HT
0 (z)JH0(z) = z2k +O (z2k−1

)
. (6.3)

As we will see, this leads to the so-called semi-local vortices. This condition can easily be
written down for any other simple group by means of its invariant tensors.

The moduli matrix H0 has the general properties:

• it is an N ×NF complex matrix;

• all of its elements are polynomials in z. The algorithm given in Ref. [134] implies that
it is sufficient to consider only polynomials as holomorphic functions;
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• it is defined only up to the V -equivalence relation, Eq. (1.54);

• it is subject to the weak condition, Eq. (1.72).

The moduli parameters φi for a BPS vortex solution emerge as coefficients inH0(z) and thus
the moduli space of the solutions is defined by the above properties only. Of course, all the
matrices which we found in Sec. 5 for the local vortices satisfy these conditions a fortiori.
Specifically, one can easily check that the special point H(µ̃1,··· ,µ̃M )

0 in Eq. (4.8) satisfies the
weak condition.

In the strong coupling limit e, g →∞, the master equations (1.58) and (1.59) are exactly
solved by Ω′ = Ω′∞, ω = ω∞ in Eq. (1.93) and the energy density and Kähler potential for
the effective action for the vortices (lumps) are given by [5]

E = 2∂∂̄K , K(φi, φi∗) =

∫
d2x K , K = ξ log Tr

[√
IG′I

†
G′

]
, (6.4)

with the G′-invariant IG′ = HT
0 (z)JH0(z). Even in the case of finite gauge couplings,

these are considered to be good approximations when me,gL � 1 where L is the typical
distance from the core of the vortices. By substituting a typical form ofH0(z) into the above
formula, one can obtain multiple peaks in the energy profile even for a minimal winding
vortex (k = 1). We call these interesting multi-peak solutions fractional vortices and they
are discussed in Chap. 10. First we will discuss the differences between local and semi-local
vortices in the next Section and then we will move on to solving some technical problems
before studying the patches and transition functions for the semi-local vortices.

6.2 Local versus semi-local vortices

One is often interested in knowing which of the moduli parameters describe the so-called
local (or ANO-) vortices [11, 12]), which have profile functions with exponential tails. For
example, the thoroughly studied U(N) non-Abelian vortices are of the local type when
the model has a unique vacuum: this is indeed the case when the number of flavors is the
minimal one, i.e. just sufficient for the color-flavor locked vacuum (NF = N Higgs fields in
the N representation of SU(N)). For NF greater than N , the vacuum moduli space contains
continuous moduli

GrNF,N ' SU(NF)/[SU(NF −N)× SU(N)× U(1)] , (6.5)

and, as a consequence, the generic non-Abelian vortex solution is of the “semi-local” type
[84, 85, 86, 48, 227], with power-like tails. A characteristic feature of the semi-local vortices
is their size moduli, which are non-normalizable [115, 116]. A lesson from the U(N) non-
Abelian vortices is that the semi-local vortices become local (ANO-like) vortices, when all
the size moduli are set to zero.

Our model with G′ = SO(N) or USp(2M), even with our choice NF = N , that is the
minimum number of flavors that allows for a color-flavor locked vacuum, possesses always
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a non-trivial vacuum moduli space. In fact, in the class of theories considered here, its
dimension is given by the following general formula

dimC [Mvac] = NNF − dimC
[
U(1)C ×G′C] > 0 . (6.6)

This strongly suggests that even for NF = N , generic configurations are of the “semi-local”
type. The Kähler metric and its potential on the vacuum moduli space have been obtained
in Ref. [5].

The distinction between local and semi-local vortices can be made by using the moduli
matrix. In order to see this, the asymptotic behavior of the configurations must be clarified.
First note that the vacuum moduli spaces of our models are Kähler manifoldsMvac and our
gauge theories reduce to non-linear σ models (NLσMs) whose target space isMvac, when
the gauge couplings are sent to infinity. In this limit, vortices generally reduce to the so-
called σ model lumps [71] (sometimes also called two-dimensional Skyrmions or σ model
instantons) characterized by

π2(Mvac) ,

i.e. a wrapping around a 2-cycle insideMvac. By rescaling sizes, taking the strong coupling
limit can be interpreted as picking up the asymptotic behavior, and thus, even for a finite
gauge coupling, asymptotic configurations of semi-local vortices are well-approximated by
lumps [86, 48, 227].

Consider the lump solutions of the NLσM on Mvac. Let us take holomorphic G-
invariants {IIG} as inhomogeneous coordinates ofMvac and denote its Kähler potential by
K = K(IG, I

∗
G). A lump solution is then given by a holomorphic map

z ∈ C → IIG = f I(z) ∈Mvac . (6.7)

with single-valued functions {f I(z)}. For finite-energy solutions, the boundary |z| = ∞ is
mapped to a single point IIG = vI ∈ Mvac. So the maps {f I(z)} are asymptotically of the
form

f I(z) = vI +
uI

z
+O (z−2

)
, uI ∈ C . (6.8)

The corresponding energy density E has a power behavior

E = 2KJJ̄(IG, ĪG) ∂IJG(z) ∂̄Ī J̄G(z̄) =
2

|z|4 KJJ̄(v, v̄)uJ ūJ̄ +O (|z|−5
)
, (6.9)

where we assume that {IIG} is a local coordinate system in the vicinity of the point IIG = vI

and the manifold is smooth at that point. As mentioned above, this asymptotic behavior is
valid for that of the vortices as well. Since {IIG} ' {I iG′}/U(1)C in the caseG = G′×U(1),
the holomorphic maps and the moduli matrix are related by

{f I(z)} ' {IG′(z)}/ ∼ , (6.10)

where “∼” is defined as the equivalence relation

I iG′(z) ∼ P (z)I iG′(z) , with P (z) ∈ C[z] . (6.11)
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Hence, the asymptotic tail of the configurations is generically power-like, i.e. the generic
vortices are of the semi-local type.

Although this is in general the case, it might happen that all the holomorphic functions
{I iG′(H0(z))} have common zeros and that the quotient above is ill-defined. In such case,
from the point of view of f I(z), we completely lose the information about the common
zeros accompanied by some vorticity. Namely, the signature of the corresponding vortices
vanishes from their polynomial tails and π2(Mvac) becomes trivial1. Specifically, it can
happen that all the holomorphic invariants are proportional to a polynomial P (z):

f I(z) = const. ⇐ I iG′(H0(z)) = P (z)
ni
n0 for all i , (6.12)

or possibly that there exists only one such holomorphic invariant. In the case of the U(N),
with NF = N i.e. the model considered earlier,Mvac is just a single point. Even in the SO
and USp cases, we do not consider any non-trivial element of the second homotopy group
of Mvac but we fix a point of Mvac at |z| → ∞. Therefore, one must return to the mas-
ter equations to examine the asymptotic behavior. The moduli matrix satisfying Eq. (6.12)
could be transformed to a trivial one such that Ω0 = 1N in Eqs. (1.58) and (1.59), by using
an extended V -transformation allowing for negative powers of z, with a singular determi-
nant det (V (z)) = P (z)−1. After this operation the master equation would take the form
of a Liouville-type equation with point-like sources;2 hence the asymptotic tail is indeed
exponential. In other words, the conditions (6.12) mean that the (static) vortex is decoupled
from any massless mode in the Higgs vacuum and hence the dominant contribution to its
configuration comes from massive modes in the bulk. The corresponding vortices are purely
of local type. Conversely, we can clearly identify a local vortex and its position by looking
at common zeros, although a composite state of a semi-local vortex and a local vortex also
has a polynomial tail. The above observations can briefly be summarized as follows. The
asymptotic behavior of a vortex is classified by the lightest modes in the bulk coupled to its
configuration. In other words, a vortex is necessarily of the local type, when the vacuum
moduli space is just a point (i.e. a unique vacuum). Semi-local vortices are present only if
the vacuum moduli space is non-trivial (i.e. having continuous moduli).

Once we have clarified the origin of the of polynomial tails, it is easier to identify the
non-normalizable modes and the results in Ref. [5] for lumps can be readily applied to vor-
tices. Semi-local vortices always have non-normalizable moduli, which live on the tangent
bundle of the moduli space of vacua3

(vI , uI) ∈ TMvac . (6.13)

1The price of the loss of vorticity in the map (6.7) is the appearance of small lump singularities, which
manifest themselves as spikes (delta functions) in the energy density.

2 In the well-known Abelian case G = U(1), this transformed master equation is nothing but Taubes’
equation. This transformation for non-Abelian cases means that all information about orientational moduli are
also localized at the zeros, in other words, the moduli matrix can be reconstructed from the data at the zeros in
the case of local vortices [134]. For semi-local vortices, this is clearly not the case.

3vI are nothing but vacuum moduli and all of the uI ’s are not always independent and consist of overall
semi-local moduli like an overall size modulus. The interpretation as a tangent bundle can be derived from Eq.
(6.8)
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In our case, G′ = SO(N), USp(N), with the common U(1) charge for the scalar fields
H , all the GC invariants IIG(H) can be written using the meson ISO,USp in Eq. (1.94). For
instance, since Tr[ISO,USp] 6= 0 in the chosen vacuum, we can construct

I
(r,s)
G (H) ≡ (ISO,USp(H))rs

Tr[ISO,USp(H)]
=

(
HTJH

)r
s

Tr[HTJH]
, 1 ≤ r ≤ s ≤ N . (6.14)

The condition for (winding k) local vortices is thus:

ISO,USp(H0) = HT
0 (z)JH0(z) =

(
k∏
i=1

(z − zi)
2
n0

)
J . (6.15)

This is called the strong condition, in contrast to the weak condition (1.72) which character-
izes a more general class of solutions including semi-local vortices.

One can regard this condition as being physically required by modifying our model in
such a way that the continuous directions of the vacuum are indeed being lifted. For instance,
it is not difficult to add an appropriate superpotential δW to our model, introducing a chiral
multiplet A which is a traceless N -by-N matrix taking value in the usp (so) algebra in the
SO case (USp case), viz. ATJ = JA, and having a U(1) charge −2:

δW ∝ Tr[AHTJHJ ] , (6.16)

however such a term would nevertheless reduce the amount of supersymmetry. As we have
seen in Chap. 5 in some cases, the strong condition can give rise to singularities in the
moduli space, which will be inherited into the target space of an effective action for the
local vortices.

6.3 Dimension of the moduli space
The index theorem which is demonstrated in Chap. 7 tells us that our moduli space has

dimension:

dimC (MG′,k) =
kN2

n0

= ν N2 . (6.17)

This dimension should coincide with that of the space spanned by the moduli in H0(z), if
the master equations have a unique solution for a given H0(z). It is easy to confirm this by
considering the vicinity of a special point of the moduli space.

Let us find the general form of H0 in the vicinity of the special point (4.8) by perturbing

H0. For definiteness, let us consider the perturbation around H
( k
2
,··· , k

2
)

0 :

H
( k
2
,··· , k

2
)

0 + δH0 =

(
zk1M

1M

)
+

(
δA(z) δC(z)
δB(z) δD(z)

)
, (6.18)

where δA(z), δB(z), δC(z) and δD(z) are M ×M matrices whose elements are holomor-
phic functions of z with small (infinitesimal) coefficients4. Not all of the fluctuations are

4Notice that here we are considering fluctuations around a k-vortex configuration with even parity. The
generalization to the odd case is discussed at the end of the Section.
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independent though: we must fix them uniquely by using the V -equivalence (1.54). The
infinitesimal V -transformation satisfies the condition (where we have set V = 1N )

δV T(z)J + JδV (z) = 0 ,

which just represents the algebra of SO(2M,C), USp(2M,C) and can be expressed as

δV (z) =

(
δL(z) δNA,S(z)

δMA,S(z) −δLT(z)

)
. (6.19)

Again δL(z), δMA,S(z) and δNA,S(z) are M ×M matrices whose elements are holomor-
phic in z and their coefficients are infinitesimally small. Acting with this infinitesimal V -
transformation on the moduli matrix

δV (z)H
( k
2
,··· , k

2
)

0 + δH0 '
(

zkδL(z) δNA,S(z)
zkδMA,S(z) −δLT(z)

)
+

(
δA(z) δC(z)
δB(z) δD(z)

)
, (6.20)

we can set δD(z)→ 0, δC → δCS,A(z) and δB(z)→ δBS,A(z) + δb(z) yielding:

δH0 =

(
δA(z) δCS,A(z)

δBS,A(z) + δb(z) 0

)
. (6.21)

Note that we have adopted the notation that δX(z) stands for a general polynomial function
while δx(z) denotes a holomorphic function whose degree is less than the vortex number k.
Now the V -transformation is completely fixed, and one can determine the true degrees of
freedom of the fluctuations. The infinitesimal form of the weak condition (1.72) is

δHT
0 (z)JH0(z) +H0(z)JδH0(z) = O(zk−1) .

This leads to δA→ δa(z), δCS,A(z)→ δcS,A(z), δBS,A(z)→ 0 and δb(z)→ δbA,S(z):

δH0(z) =

(
δa(z) δcS,A(z)
δbA,S(z) 0

)
. (6.22)

These are good coordinates in the vicinity of the special point

H
( k
2
,··· , k

2
)

0 = diag
(
zk, · · · , zk, 1, · · · , 1) .

Of course, this is a only local description but it is sufficient for counting the dimensions of
the moduli space. The complex dimension is the number of the complex parameters in the
fluctuations

dimCMk-semi-local
SO(2M),USp(2M) = 2kM2 . (6.23)

In order to restrict the solutions to the local vortices, one further imposes the following
conditions:

δa(z)→ δP (z)1M , δcS,A(z)→ 0 , (6.24)
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with an arbitrary polynomial δP (z) of order (k − 1). This leads to the dimension of the k
local vortex moduli:

dimCMk-local
SO(2M),+ = k

(
1 +

M(M − 1)

2

)
, (6.25)

dimCMk-local
USp(2M) = k

(
1 +

M(M + 1)

2

)
. (6.26)

In a similar way, one can count the dimension in the vicinity of the special point of positive
chirality (k, · · · , k)5 for the SO(2M + 1) case and obtain

dimCMk-semi-local
SO(2M+1),+ = k (2M + 1)2 , (6.27)

dimCMk-local
SO(2M+1),+ = k

(
M2 + 1

)
. (6.28)

Notice that these results can be considered as a non-trivial consistency check for the moduli
matrix formalism. In fact, by physical arguments, we always expect the following relation
among the dimensions of the moduli spaces:

dimCMk = k dimCMk=1 , (6.29)

which is valid both in the local and semi-local case. This relation can readily be used to
generalize the above equations to the other cases, including special points with odd chirality.

6.4 The k = 1 semi-local vortex for G′ = SO(2M) and
G′ = USp(2M)

Let us study the minimal-winding semi-local vortex in this Section. The k = 1 vortex is
special in the sense that all the fluctuations in Eq. (6.22) can actually be promoted to finite
parameters. Namely, the H

( 1
2
,··· , 1

2
)

0 -patch is obtained by just replacing the small fluctuations
δa(z), δbA,S(z), δcS,A(z) by finite constant parameters A,BA,S, CS,A, respectively:

H
( 1
2
,··· , 1

2
)

0 (z) =

(
z1M + A CS,A
BA,S 1M

)
. (6.30)

One can verify that this indeed satisfies the weak condition (1.72) for k = 1. Notice that the
above matrix can also be rewritten as

H
( 1
2
,··· , 1

2
)

0 (z) = ŨC

(
z1M + Ã

1M

)
UB , (6.31)

5Around other special points this strategy may not work in the local case. Other special points may sit
on an intersection of two different submanifolds and one cannot make a distinction between the fluctuations
among them. It is possible, in any case, to identify, case by case, a special point which does not lie on an
intersection. However, one might sometimes need to include quadratic fluctuations, in order to implement
correctly the strong condition.
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where we have defined

Ã ≡ A− CS,ABA,S , UB ≡
(

1M
BA,S 1M

)
, ŨC ≡

(
1M CS,A

1M

)
. (6.32)

When A is proportional to the unit matrix and CS,A is zero, that is, corresponding to a local
vortex (5.9), UB corresponds to the Nambu-Goldstone modes associated with the symmetry
breaking G′C+F → U(M). It is remarkable that this is not always the case for general
semi-local configurations since a non-vanishing Ã and CS,A break U(M) further down. In
general, the symmetry breaking is G′C+F → Zn0 .

Let us next consider the transition functions between two different patches. As we did
for the local vortices in Sec. 5, the other patches can be obtained as in Eq. (5.10), i.e. via
the permutation matrix Pr defined in Eq. (5.11). Transition functions are always obtained
by means of the V -transformations as in Eq. (1.54)

H ′0(z) = V (z)H0(z) , V (z) ≡ Ve V
′(z) , Ve ∈ C∗ , V ′(z) ∈ G′C . (6.33)

For example, consider two patches, H
( 1
2
,··· , 1

2
)

0 (z) given by Eq. (6.31) and

H
(
0

r︷ ︸︸ ︷
− 1

2
,··· ,− 1

2
,

M−r︷ ︸︸ ︷
1
2
,··· , 1

2
)(z) = P−1

r H
( 1
2
,··· , 1

2
)

0
′(z)Pr , (6.34)

H
( 1
2
,··· , 1

2
)

0
′(z) = ŨC′

(
z1M + Ã′

1M

)
UB′ . (6.35)

The equation (6.33) in this case reads(
z1M + Ã′

1M

)
UB′PrU−B = Ũ−C′PrV ŨC

(
z1M + Ã

1M

)
. (6.36)

The transition functions will be determined by this condition together with

(UB′PrU−B)TJ(UB′PrU−B) = J , and (PrV )TJ(PrV ) = J .

The solution to these conditions are of the form

UB′PrU−B =

(
a a dA,S
0 (a−1)

T

)
, Ũ−C′PrV ŨC =

(
a (z1M + Ã′) a dA,S
0 (a−1)

T

)
, (6.37)

with a ∈ GL(M,C) and dA,S is an M ×M (anti)symmetric matrix and

Ã′ = a Ã a−1 , (6.38)

C ′S,A = a

[
CS,A − 1

2

(
Ã dA,S − dA,S ÃT

)]
aT . (6.39)

Notice that TrÃ is invariant. The final step is to determine a, dA,S and the transition function
for B′A,S by investigating the concrete form of UB

UB =


1r

1M−r
b1 b2 1r
−ε bT

2 b3 1M−r

 , bT
1,3 = −ε b1,3 , (6.40)
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and analogously for UB′ . Plugging this into the left hand side of the first equation in (6.37),
one obtains the following result:

a =

(−ε b1 −ε b2

0 1M−r

)
, dA,S =

(−b−1
1

0M−r

)
. (6.41)

The transition functions between BA,S and B′A,S are indeed the same as those of the local
vortex in Eq. (5.14)

b′1 = ε b−1
1 , b′2 = b−1

1 b2 , b′3 = b3 + ε bT
2 b
−1
1 b2 . (6.42)

We again observe an important result from the first equation in (6.37). It tells us that

detPr = +1 , (6.43)

thus there exist two copies of the moduli space, which are disconnected even in the larger
space including the semi-local vortices, in the case of G′ = SO(2M). It is of course due
to the Z2 parity (see Sec. 4.2). As in the case of the local vortices in G′ = SO(2M) theory
discussed earlier, the patches with different Z2-parity are disconnected.

6.4.1 Example: G′ = SO(4)

Let us give an example in the G′ = SO(4) theory. The patches with Z2-parity +1 are

H
( 1
2
, 1
2

)

0 =


z + a b e f
c z + d f g
0 i 1 0
−i 0 0 1

 , H
(− 1

2
,− 1

2
)

0 =


1 0 0 i′

0 1 −i′ 0
e′ f ′ z + a′ b′

f ′ g′ c′ z + d′

 . (6.44)

These patches are connected by the V -transformation (1.54)

H
(− 1

2
,− 1

2
)

0 = V (− 1
2
,− 1

2
),( 1

2
, 1
2

)H
( 1
2
, 1
2

)

0 , (6.45)

V (− 1
2
,− 1

2
),( 1

2
, 1
2

) =


0 0 0 i′

0 0 −i′ 0

0 1
i′

z + a′+d′

2
0

− 1
i′

0 0 z + a′+d′

2

 , (6.46)

The explicit form of the transition functions (the relation between the primed and unprimed
parameters) is given in Eq. (D.1).

There are two more patches for the vortex with Z2-parity −1 and they are described by
the moduli matrices

H
( 1
2
,− 1

2
)

0 =


z + a′′ f ′′ e′′ b′′

−i′′ 1 0 0
0 0 1 i′′

c′′ g′′ f ′′ z + d′′

 , H
(− 1

2
, 1
2

)

0 =


1 i′′′ 0 0
f ′′′ z + d′′′ b′′′ e′′′

g′′′ c′′′ z + a′′′ f ′′′

0 0 −i′′′ 1

 .

(6.47)
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These two patches are connected in the same way as the two with positive chirality. In fact
they define another copy of the same space. In agreement with the general results found
above, neither one of the even patches: H

(− 1
2
,− 1

2
)

0 , H
( 1
2
, 1
2

)

0 , is connected with one of the odd,

H
( 1
2
,− 1

2
)

0 andH
−( 1

2
, 1
2

)

0 . One can easily see that there does not exist any V -transformation con-
necting them. One may construct a holomorphic matrix X(z) which satisfies, for example,

H
( 1
2
,− 1

2
)

0 = X(z)H
( 1
2
, 1
2

)

0 , however, violating the condition X(z) ∈ SO(4,C).

6.5 The k = 2 semi-local vortices
Consider now the patches associated with the k = 2 (doubly-wound) vortices. Let us

begin with infinitesimal fluctuations around the special point

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 ) =


z21r

z1M−r
1r

z1M−r

→ H
(1,··· ,1,0,··· ,0)
0 + δH0(z) . (6.48)

In order to get rid of the unphysical degrees of freedom in the fluctuations δH0, let us
consider an infinitesimal V -transformation (1.54)

δV =


δK11 δM11 δK12;A,S δM12

δL11 δN11 −ε δMT
12 δN12;A,S

δK21;A,S δM21 −δKT
11 −δLT

11

−ε δMT
21 δN21;A,S −δMT

11 −δNT
11

 . (6.49)

Acting with the V -transformation on the perturbed moduli matrix, we find

δH0 ∼ δH0 + δV H
(1,··· ,1,0,··· ,0)
0 . (6.50)

Since the explicit form of δV H(1,··· ,1,0,··· ,0)
0 is

δV H
(1,··· ,1,0,··· ,0)
0 =


z2δK11 zδM11 δK12;A,S zδM12

z2δL11 zδN11 −ε δMT
12 zδN12;A,S

z2δK21;A,S zδM21 −δKT
11 −zδLT

11

−z2ε δMT
21 zδN21;A,S −δMT

11 −zδNT
11

 ,

the physical degrees of freedom in the fluctuations can be expressed as

δH0 = (6.51)
δA11 δC11 δA12;S,A δC12

δB11 δD11 0 δD12;S,A + δd12;A,S

δA21;S,A + δa
(1)
21;A,Sz + δa

(0)
21;A,S δc21 0 δc22

δB21 δD21;S,A + δd21;A,S 0 δd22

 ,

where δX denotes a generic holomorphic polynomial and δx stands for a constant matrix.
The infinitesimal version of the weak condition (1.72)

δHT
0 (z)JH0(z) +H0(z)JδH0(z) = O(z) , (6.52)
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turns out to be equivalent to the following conditions

{δD11, δD21;S,A, δD12;S,A} = O(1) ,

{δA11, δC11, δA12;S,A, δC12} = O(z) ,

δA21;S,A = 0 , δB11 = −δcT
22z + δb11 , δB21 = −ε δcT

21z + δb21 . (6.53)

We thus find the generic form of the fluctuations in the vicinity of the special point described
by the moduli matrix H(1,··· ,1,0··· ,0)

0 as

δH0 =


δa

(1)
11 z + δa

(0)
11 δc

(1)
11 z + δc

(0)
11 δa

(1)
12;S,Az + δa

(0)
12;S,A δc

(1)
12 z + δc

(0)
12

−δcT
22z + δb11 δd11 0 δd12

δa
(1)
21;A,Sz + δa

(0)
21;A,S δc21 0 δc22

−ε δcT
21z + δb21 δd21 0 δd22

 .

(6.54)

Let us count the dimensions of the moduli space. We have six matrices δa(α)
ij of size r × r,

two matrices δbij of size (M−r)×r, six matrices δc(α)
ij of size r×(M−r) and four matrices

δdij of the size (M − r)× (M − r). Thus summing up we obtain the correct dimension

dimC

[
M2-semi-local

SO(2M),USp(2M)

]
= 4M2 . (6.55)

The next task is to find the coordinate patches with finite parameters (i.e. large fluctua-
tions). To this end, let us naı̈vely promote all the small fluctuations in Eq. (6.54) to finite
parameters as δx→ x (as was done in the case of the minimal semi-local vortices) :

H0 =


z21r + a

(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;S,Az + a

(0)
12;S,A c

(1)
12 z + c

(0)
12

−cT
22z + b11 z1M−r + d11 0 d12

a
(1)
21;A,Sz + a

(0)
21;A,S c21 1r c22

−ε cT
21z + b21 d21 0 z1M−r + d22

 . (6.56)

But such a procedure is inconsistent with the weak condition (1.72). Although

HT
0 JH0

∣∣
O(zn)

= 0 ,

for n ≥ 3, the terms of order O(z2) turn out to be (z2 times)

HT
0 JH0

∣∣
O(z2)

= (6.57)
−2ΛS,A −a(1)

21;A,Sc
(1)
11 1r − a(1)

21;A,Sa
(1)
12;S,A −a(1)

21;A,Sc
(1)
12

c
(1)T
11 a

(1)
21;A,S 0 0 1M−r

ε (1r + a
(1)
12;S,Aa

(1)
21;A,S) 0 0 0

c
(1)T
12 a

(1)
21;A,S ε1M−r 0 0

 ,

with

− 2ΛS,A ≡ a
(1)T
11 a

(1)
21;A,S − a(1)

21;A,Sa
(1)
11 + c21c

T
22 + ε c22c

T
21 . (6.58)
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This must be HT
0 JH0

∣∣
O(z2)

= J , i.e. we have to eliminate the undesired terms, such that
Eq. (6.57) becomes exactly equal to J . To compensate the surplus terms, we add the follow-
ing extra term

Hextra
0 =


0r

0M−r
ΛS,A a

(1)
21;A,Sc

(1)
11 a

(1)
21;A,Sa

(1)
12;S,A a

(1)
21;A,Sc

(1)
12

0M−r

 . (6.59)

Finally we obtain the finite coordinate patch

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z) =

z21r + a
(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;S,Az + a

(0)
12;S,A c

(1)
12 z + c

(0)
12

−cT
22z + b11 z1M−r + d11 0 d12

a
(1)
21;A,Sz + a

(0)
21;A,S + ΛS,A c21 + a

(1)
21;A,Sc

(1)
11 1r + a

(1)
21;A,Sa

(1)
12;S,A c22 + a

(1)
21;A,Sc

(1)
12

−ε cT
21z + b21 d21 0 z1M−r + d22

 .

(6.60)

All other patches can be obtained by making use of the permutation (5.11):

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z)→ P−1

r′ H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )′(z)Pr′ . (6.61)

Since the transition functions between the different patches of the k = 2 semi-local vortices
are rather complicated, we shall not discuss them in this paper; we limit ourselves to showing
just a few simple examples below.

6.5.1 G′ = SO(4)

As in the case of the k = 2 local vortices discussed in Sec. 5.4.2, at least nine patches are
needed to describe the k = 2 semi-local vortices. They are divided into two disconnected
parts as 9 = 5 + 4 according to the Z2-parity. The five matrices corresponding to QZ2 = +1

are {H(1,1)
0 , H(1,−1)

0 , H(−1,1)
0 , H(−1,−1)

0 , H(0,0)
0 } and the four matrices with QZ2 = −1 are

{H(1,0)
0 , H(−1,0)

0 , H(0,1)
0 , H(0,−1)

0 }.
Let us start with the patches having QZ2 = +1,

H
(0,0)
0 = (z − z0)14 +D , (6.62)

H
(1,1)
0 =

(
z212

12

)
+

(
A1z + A0 C1Sz + C0S

H1Az +H0A + 1
2

(
H1AA1 − AT

1H1A

)
H1AC1S

)
,

where D is an arbitrary 4× 4 matrix. The other patches {H(1,−1)
0 , H(−1,1)

0 , H(−1,−1)
0 } can be

obtained by the permutations (5.11) of H(1,1)
0 .

Now we can clearly see the difference between the local and semi-local vortices. Let us
consider the (0, 0)-patch. The patches for the local vortices are given in Eq. (5.86) and those
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for the semi-local vortices in Eq. (6.62). To avoid confusion, let us denote them by (0, 0)l+
and (0, 0)l− for the former and (0, 0)sl for the latter. Clearly, the (0, 0)l+ and (0, 0)l− patches
are unified into the (0, 0)sl-patch when the strong condition is relaxed to the weak one.

As explained in Sec. 5.4.2, the (0, 0)l+ patch (with the (1, 1) and (−1,−1) patches) and
the (0, 0)l−-patch (with the (−1, 1) and (1,−1) patches) correspond to two possible choices
of the Z2-parities of the component vortices (Q

(1)
Z2
, Q

(2)
Z2

) = (±1,±1). This reflects the
fact that any product of the moduli matrices for local vortices generates automatically local
vortices. It is tempting to interpret the fact that the two spaces are disconnected as meaning
that the Z2-parity of each component vortex is conserved. However, this is not the case for
the semi-local vortices. Products of moduli matrices satisfying the weak condition (1.72)
do not, in general, satisfy it. The Z2-parity of each vortex is therefore not conserved in the
semi-local case.

Let us examine the transition functions between the (1, 1) and (0, 0)-patches, explicitly.
Notice, that we have already observed the connectedness between them, as it was indeed
present in the case of the local vortices. Our aim to express the following complicated
results is completeness of the calculations. Let us write down the moduli matrices as

H
(1,1)
0 =


z2 + a′1z + a′0 b′1z + b′0 e′1z + e′0 f ′1z + f ′0
c′1z + c′0 z2 + d′1z + d′0 f ′1z + f ′0 g′1z + g′0
c′1i
′
1 i′1z + i′0 − 1

2
a′1i
′
1 + 1

2
d′1i
′
1 1 + f ′1i

′
1 g′1i

′
1

−i′1z − i′0 − 1
2
a′1i
′
1 + 1

2
d′1i
′
1 −b′1i′1 −e′1i′1 1− f ′1i′1

 ,

H
(0,0)
0 =


z + a0 b0 c0 d0

e0 z + f0 g0 h0

i0 j0 z + k0 l0
m0 n0 o0 z + p0

 . (6.63)

The transition functions are determined through a V -transformation (1.54) satisfying the
relation V (1,1),(0,0)H

(0,0)
0 = H

(1,1)
0 :

V (1,1),(0,0) =


z + 1

2
a′1 + 1

2
d′1 − i′0

i′1
0 0 1

i′1

0 z + 1
2
a′1 + 1

2
d′1 − i′0

i′1
− 1
i′1

0

0 i′1 0 0
−i′1 0 0 0

 . (6.64)

The transition functions connecting the patches H(0,0)
0 and H(1,1)

0 are thus given explicitly,
see Eq. (D.2).

The transition functions between the (1,−1) and (0, 0)-patches can be obtained by the
permutation of the above (1, 1)-(0, 0) system as

P−1H
(1,1)
0 P = H

(1,−1)
0 , P−1H

(0,0)
0 P = H̃

(0,0)
0 , P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (6.65)

Therefore, the transition functions are easily found as

V (1,−1),(0,0)H̃
(0,0)
0 = H

(1,−1)
0 , V (1,−1),(0,0) ≡ P−1V (1,1),(0,0)P . (6.66)
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The transition functions between the (1, 1) and (1,−1)-patches can be obtained by combin-
ing two transition functions given above.

Let us next show the transition functions between the patches with Z2-parity −1. The
explicit form of the moduli matrix is given by

H
(1,0)
0 =


z2

z
1

z

+


a1z + a0 b1z + b0 c1z + c0 d1z + d0

−e1z + e0 f0 0 g0

−e1i1 i1 0 e1

−i1z + i0 j1 0 k0

 . (6.67)

The (−1, 0)-patch can be obtained by acting with the permutation matrix on the (1, 1)-patch
as follows

H
(−1,0)
0 = P−1H

(1,0)
0

′P , P =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (6.68)

The transition functions between these two patches are obtained by

V (−1,0),(1,0)H
(1,0)
0 = H

(−1,0)
0 , (6.69)

V (−1,0),(1,0) =


0 0 −i′1e′1 0

0 0 −e′1z + e′0 − e′1
i′1

− 1
e′1i
′
1

1
e′1

(
z − e′0

e′1

) (
z − e′0

e′1

)(
z − i′0

i′1

)
1
i′1

(
z − i′0

i′1

)
0 − i′1

e′1
−i′1z + i′0 0

 . (6.70)

The other transition functions between all the other patches are obtained through suitable
permutations.

It can be shown that the patches with QZ2 = +1 and those with QZ2 = −1 are indeed
disconnected. Let us take the example of the two moduli matricesH(0,0)

0 andH(1,0)
0 . Assume

that there exists a V -function such that

V H
(0,0)
0 = H

(1,0)
0 . (6.71)

First we observe that V is a matrix whose elements are all at most of order z. This is due to
H

(0,0)
0 having the term, z14 and the highest power of V H(0,0)

0 should not exceed 2 which is
the highest degree of H(1,0)

0 . We can thus determine the linear term in z of V

V =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 z +


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

 . (6.72)

Furthermore, let us focus on the linear terms of z in Eq. (6.71), i.e.,
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

D +


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

 =


a1 b1 c1 d1

−e1 1 0 0
0 0 0 0
−i1 0 0 1

 . (6.73)
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By comparison of the third row of both sides, we conclude that (v31, v32, v33, v34) = (0, 0,
0, 0. However, detV = 0 does not satisfy the requirement V ∈ SO(4,C): hence these two
patches are disconnected.

6.6 The k = 1 semi-local vortex for G′ = SO(2M + 1)

The result of the index theorem (see Chap. 7) yields that the real dimension is 2k(2M +
1)2 for the moduli space in SO(2M + 1). Following the technology explained in Sec. 6.5, it
is straightforward to extend the results to the case of G′ = SO(2M + 1). The moduli matrix

for k = 1 in the (

r︷ ︸︸ ︷
1, · · · , 1,

M−r︷ ︸︸ ︷
0, · · · , 0)-patch is the most general semi-local moduli matrix and

is given by

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 )(z) =0BBBBBBBBBB@

z21r + a
(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;Sz + a

(0)
12;S c

(1)
12 z + c

(0)
12 e

(1)
15 z + e

(0)
15

−cT
22z + b11 z1M−r + d11 0 d12 e25

a
(1)
21;Az + a

(0)
21;A + ΛS c21 + a

(1)
21;Ac

(1)
11 1r + a

(1)
21;Aa

(1)
12;S c22 + a

(1)
21;Ac

(1)
12 e35 + a

(1)
21;Ae

(1)
15

−cT
21z + b21 d21 0 z1M−r + d22 e45

−eT
35z + eT

31 eT
32 0 eT

34 z + e55

1CCCCCCCCCCA
(6.74)

where we have defined

− 2ΛS ≡ a
(1)T
11 a

(1)
21;A − a(1)

21;Aa
(1)
11 + c21c

T
22 + c22c

T
21 + e35e

T
35 . (6.75)

6.6.1 G′ = SO(3)

For G′ = SO(3), k = 1 there are 3 patches, viz. (1), (−1), (0). The moduli matrix for
the (0)-patch is simply

H
(0)
0 = z13 + A , (6.76)

where it is noteworthy to remark that the color+flavor symmetry is unbroken.
The moduli matrix for the (1)-patch is

H
(1)
0 =

z2 + z1z + z2 a+ fz c+ bz

−d2

2
1 −d

e+ dz 0 z − z3

 , (6.77)

while the moduli matrix for the (−1)-patch is simply obtained by the permutation

H
(−1)
0 = PH

(1)
0 P−1 , with P =

0 1 0
1 0 0
0 0 1

 . (6.78)
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The patches (−1) and (1) are connected by a V -transformation given by

H ′(1)
0 = V (1),(−1)H

(−1)
0 , V (1),(−1) =

 (e′+d′z′)2

d′2
− 2
d′2
−2(e′+d′z′)

d′2

−d′2

2
0 0

e′ + d′z′ 0 −1

 , (6.79)

and the transition functions can be found in App. D. The mass center of the system can
be identified by taking the coefficient of the z2 term of detH0. It is given by: C.M. =
−z′1 + z′3 + b′d′+d′2f ′/2 = −z1 + z3 + bd+d2f/2, which has a form that is invariant under
the change of patch.

The patches (1) and (0) are disconnected. This can be seen from identifying the linear
order of V

H
(1)
0 = V H ′0

(0)
= V (z13 + A′) ⇒ V = z diag(1, 0, 0) + Vconst . (6.80)

Looking now at the linear order in z of the equation

z1 f b
0 0 0
d 0 1

 =

1 0 0
0 0 0
0 0 0

A′ +

v1 v2 v3

v4 v5 v6

v7 v8 v9

 , (6.81)

which reveals that the second row of V has to be zero, which takes V out of SO(3,C) and
the patches are thus disconnected.

6.6.2 G′ = SO(5)

For SO(5) we have nine patches. The five having Z2 charge +1 are all connected and
are described by the following moduli matrices

H(0,0)(z) = z15 +


a′1 a′2 a′3 a′4 a′5
b′1 b′2 b′3 b′4 b′5
c′1 c′2 c′3 c′4 c′5
d′1 d′2 d′3 d′4 d′5
e′1 e′2 e′3 e′4 e′5

 , (6.82)

H(1,1)(z) = (6.83)
z2 + a1z + b1 a2z + b2 c1z + d1 c2z + d2 g1z + h1

a3z + b3 z2 + a4z + b4 c2z + d2 c3z + d3 g2z + h1

ea3 − i21
2

ez + f − e(a1−a4)
2
− i1i2

2
1 + ec2 ec3 i1 + eg2

−ez − f − e(a1−a4)
2
− i1i2

2
−ea2 − i22

2
−ec1 1− ec2 i2 − eg1

−i1z + j1 −i2z + j2 0 0 z + y

 ,
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with the rest being permutations of the latter. The moduli matrix (0, 0)-patch is connected
to the (1, 1)-patch by the following V -transformation

H(1,1)(z) = V (1,1),(0,0)(z)H(0,0)(z) , (6.84)

V (1,1),(0,0) =


z + a1+a4

2
− f

e
− i1i2

2e
− i22

2e
0 1

e
i2
e

i21
2e

z + a1+a4

2
− f

e
+ i1i2

2e
−1
e

0 − i1
e

0 e 0 0 0
−e 0 0 0 0
−i1 −i2 0 0 1

 , (6.85)

where the transition functions can be found in App. D. There are four patches having Z2-
charge −1, which are all connected. They are described by (and permutations of) the fol-
lowing moduli matrix

H(1,0)(z) =


z2 + a1z + a2 c1z + c0 b1z + b0 d1z + d0 i1z + i0
f0 − e1z z + g0 0 g1 j0

−e0e1 − j21
2

e0 1 e1 j1

f1 − e0z g2 0 z + g3 j2

h0 − j1z h1 0 h2 z + k

 . (6.86)

This patch is connected to H(−1,0) by the following V -transformation

H(−1,0)(z) = V (−1,0),(1,0)(z)H(1,0)(z) , (6.87)

V (−1,0),(1,0) =


0 0 −1

2
Ξ 0 0

0 j′21
Ξ

f ′0 − e′1z −2e′21
Ξ

2e′1j
′
1

Ξ

− 2
Ξ

L1(z)
Ξ2

L2(z)
Ξ

L3(z)
Ξ2

L4(z)
Ξ2

0 −2e′20
Ξ

f ′1 − e′0z j′21
Ξ

2e′0j
′
1

Ξ

0
2e′0j

′
1

Ξ
−h′0 + j′1z

2e′1j
′
1

Ξ
1− 2j′21

Ξ

 , (6.88)

Ξ ≡ 2e′0e
′
1 + j′21 , (6.89)

1

2
L1(z) ≡ f ′1j

′2
1 − 2e′20 (f ′0 − e′1z) + e′0j

′
1 (j′1z − 2h′0) , (6.90)

L2(z) ≡ h′20 − 2h′0j
′
1z + 2f ′0 (f ′1 − e′0z) + z

(
2e′0e

′
1z + j′21z − 2e′1f

′
1

)
, (6.91)

1

2
L3(z) ≡ f ′0j

′2
1 − 2e′21 (f ′1 − e′0z) + e′1j

′
1 (−2h′0 + j′1z) , (6.92)

1

2
L4(z) ≡ j′1 (2e′1f

′
1 + j′1 (h′0 − j′1z))− 2e′0 (e′1 (h′0 + j′1z)− f ′0j′1) . (6.93)

The patches of different chiralities are indeed disconnected, as we expected from topological
reasons.
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6.7 Discussion
In this Chapter we have analyzed the BPS vortices appearing in U(1) × SO(N) and

U(1)×USp(2M) gauge theories. It has been found that, in contrast to the vortices in [U(1)×
SU(N)]/ZN ' U(N) models, the vortex moduli in these theories contain certain other
moduli, generally known as semi-local vortices, whose profile functions are characterized
by their asymptotic, power-like behavior, whereas the standard ANO vortices (including
their non-Abelian counterparts found in U(N) theories) have a sharp, exponential cutoff to
their transverse size. This is so even with the minimal number of matter fields, sufficient
for the system to have a “color-flavor-locked” Higgs phase. The difference with the unitary
gauge group case, reflects the fact that, for a given dimension, the number of gauge degrees
of freedom is less here, due to the fact that e.g. SO(2M), USp(2M) groups constitute a
strict subgroup SU(2M).

The existence of these semi-local vortex moduli is related to the existence of non-trivial
vacuum moduli of the system, and consequently, to the NLσM lumps which emerge in the
strong gauge coupling limit of our vortices [5]. In this limit a vortex solution collapses to a
vacuum configuration everywhere on the transverse plane. It defines a map of a 2-cycle onto
the moduli space of vacua, and is thus characterized by non-trivial elements of π2(Mvac).
The existence of these semi-local moduli provides the vortex, even at finite coupling, with a
very rich structure.

Related to semi-local vortices is the issue of the non-normalizability of some of the
moduli space parameters. In the case of U(N) vortices this question was solved completely
[116], by using the general formula for the effective action of vortices in terms of the mod-
uli matrix [113]. A part of this question was solved for a single vortex in SO and USp
gauge theories in the lump limit [5]. Here we have refined our understanding of the non-
normalizable modes, relating them as the moduli space parameters which live in a tangent
bundle of the moduli space of vacua of the theory.

Recently, some non-BPS extensions of U(N) vortices have been studied for the local
case [120, 121] and for the semi-local case [119] with the aim of studying interactions
and stability of non-BPS vortices. A non-BPS extension of the G′ = SO,USp cases also
remains as an open problem. In connection with this, it is known that the SO(2M) theory
admits a non-BPS Z2 vortex as π1(SO(2M)× U(1)) = Z× Z2 [228, 229].



CHAPTER 7

The index theorem

In this Chapter we will derive the most generic index theorem for non-Abelian Yang-
Mills-Higgs vortices with any gauge group that will allow the vanishing theorem to be ap-
plied and for any number of flavors that allows for the vacuum to break completely the gauge
symmetry. The result is very simple and has already been stated in the previous Chapters.

7.1 The calculation

We briefly discuss the dimension of the vortex moduli space along the lines of Ref. [9],
see also Refs. [230, 231]. In the following we will keep the gauge group completely generic
with a single overall U(1) factor i.e. U(1) × G′. Writing the BPS equations (e = g) with
linear fluctuations δH, δĀ, we obtain

D̄ δH = −i δĀH , (7.1)

D δĀ− D̄ δA =
ie2

2
tr
{(
δH H† +H δH†

)
tα
}
tα , (7.2)

and the Gauss’ law reads (with ν = 0)

tr

[(
2

e2
DµF µν + iH(DνH)† − i(DνH)H†

)
tα
]

= 0 , ∀α , (7.3)

which we use as a gauge fixing condition [9]

D δĀ+ D̄ δA =
ie2

2
tr
{(
δH H† −H δH†

)
tα
}
tα . (7.4)

A comment in store is that one might wonder why the Gauss law is not already fulfilled by
the fact that the solutions to the BPS equations satisfy the Euler-Lagrange equations of the
system. Fixing the gauge can be done in many different ways, and instead of requiring the
fluctuations to be orthogonal to the gauge orbit, it proves convenient to take a direction which
corresponds to the time direction of the Gauss law. Even if there is no time dependence of
the fields in question, we promote these fluctuations as normal fluctuations rendering the
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system better manageable. In other words, we constrain the a priori different directions of
the fluctuations to obey the linearized Gauss law. This leads to the linear system

D̄ δH = −i δĀH , (7.5)

D δĀ =
ie2

2
tr
(
δH H†tα

)
tα . (7.6)

First, we will introduce the following trick

δĀ = 2 tr
(
δĀ tβ

)
tβ , (7.7)

which makes it possible to write the linear system conveniently as the following operator
equation

∆

(
δH
δĀ

)
= 0 , (7.8)

with (taking e2 = 4 for convenience)

∆ ≡
(

iD̄ −2 tr ( ◦ tα) tαH
2 tr

( ◦ H†tα) tα iD
)
, (7.9)

which has the adjoint operator

∆† =

(
iD 2 tr ( ◦ tα) tαH

−2 tr
( ◦ H†tα) tα iD̄

)
. (7.10)

Let us start with showing that the operator ∆† does not have any zero-modes indeed. That
is, the starting point for our vanishing theorem is to take the complex norm |X|2 = trXX†

of the operator on a fluctuation

0 =

∫
C

∣∣∣∣∆†(XY
)∣∣∣∣2 (7.11)

=

∫
C

[
|DX|2 + |D̄Y |2 + |Y H|2 +

∣∣∣2tr
(
XH†tα

)
tα
∣∣∣2

+ itr∂
(
XH†Y †

)− itr∂̄ (Y HX†) ] ,
where the BPS equations have been used together with the fluctuation Y taking part of the
algebra Y = Y βtβ . This forces Y = 0. Here we assume the theory to be in the full Higgs
phase. We take the fluctuations to vanish at spatial infinity (|z| → ∞), thus the boundary
terms can be neglected and we can think of the conditions

D̄X† = 0 , D̄Y = 0 , Y H = 0 , tr
(
tαHX†

)
= 0 , (7.12)

as the BPS equations and F -term conditions for an N = 2 (d = 4) theory with Y being the
adjoint scalar of the vector multiplet and X being anti-chiral fields with the superpotential

W = tr
(
Y HX†

)
. (7.13)
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Recalling that this toy-theory is evaluated on the background configuration where H con-
tains the scalar fields of the vortex and the gauge connections in the covariant derivative
Ā are also external fields determined by the background vortex configuration. The vor-
tex configuration can always be rewritten by means of the moduli matrix method yielding
H = S−1H0(z) which gives a holomorphic description of the field X† ≡ H̃ as H̃ = H̃0S
with S the complexified gauge fields of the background configuration. It is now easy to
show that the F -term condition yields tr

(
tαH0(z)H̃0(z)

)
= 0, which in turn simplifies our

problem to finding vacuum configurations of this N = 2 theory, which has the vacuum in
the Higgs phase almost everywhere. We utilize holomorphic invariants I i∓(H0, H̃0) having
negative and positive U(1) charges, respectively. The boundary conditions for the invariants
are

I i− = 0 , I i+ = O (zniν) , (7.14)

with ν being the U(1) winding. The key point now is to find independent invariants with
positive U(1) charges which will reveal the possible existence of a non-zero H̃0. However,
the contrary is important here:

iff there exist no independent I i+, then the fluctuations X† must vanish.

In our cases having G = U(1) × G′ with G′ = U(N), SO(N), USp(2M) with a common
U(1) charge for all the fields it is an easy task to show the non-existence of independent
holomorphic invariants and the theorem readily applies and completes the proof. We can
now go on with the calculation.

Now let us calculate the following two operators ∆†∆ and ∆∆†

∆†∆ = −12∂∂̄ +

(
Γ1 + 1

2
B L1

L2 Γ2 − 1
2
Badj

)
, (7.15)

∆∆† = −12∂∂̄ +

(
Γ1 0
0 Γ2

)
, (7.16)

where B = F12 = −2[D, D̄] and we have defined the following operators

Γ1X = −iA∂̄X − i(∂̄A)X − iĀ∂X + ĀAX + 2 tr
(
XH†tα

)
tαH , (7.17)

Γ2Y = −i [Ā, ∂Y ]− i [∂Ā, Y ]− i [A, ∂̄Y ]+
[
A,
[
Ā, Y

]]
+ 2 tr

(
Y HH†tα

)
tα ,

(7.18)

L1Y = −iYDH , (7.19)

L2X = i2 tr
(
XD̄H†tα) tα , (7.20)

and the algebra of Y has been used as well as the BPS equations.
To calculate the index of ∆ we can evaluate

I = lim
M2→0

I(M2) = lim
M2→0

[
Tr
(

M2

∆†∆ +M2

)
− Tr

(
M2

∆∆† +M2

)]
, (7.21)

where Tr denotes a trace over states as well as over the matrices. Now as the eigenvalues of
the operator ∆† are all positive definite, the index counts only the zero modes of the operator
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∆. For well localized solutions (which go to zero faster than 1/r), the index is independent
of M2. For convenience we can evaluate the index in the limit M2 → ∞, thus we can
expand and obtain

I(M2) = −M2Tr
[

1

−∂∂̄ +M2

(
1
2
B L1

L2 −1
2
Badj

)
1

−∂∂̄ +M2
+ . . .

]
, (7.22)

where the ellipsis denote terms that vanish in taking the limit M2 → ∞. Tracing over the
adjoint field strength gives zero. We can now evaluate the index as

I = − lim
M2→∞

M2Tr
∫
d2x

1

2
tr(F12)

〈
x
∣∣∣(−∂∂̄ +M2

)−2
∣∣∣x〉 ,

= − lim
M2→∞

M2

NF∑
1

∫
d2x

N

2
√

2N
F 0

12

∫
d2k

(2π)2

1(
1
4
k2 +M2

)2 ,

= NFNν , (7.23)

where

ν = − 1

2π
√

2N

∫
d2x F 0

12 =
k

n0

. (7.24)

Because of the vanishing theorem, the index gives exactly the number of (complex) zero-
modes for the BPS equations for the vortex. Thus we obtain the same number of zero-modes
as the number of moduli parameters in the moduli matrix formalism. Note that the result is
obtained independently of the gauge group (however only valid when the vanishing theorem
applies) and the impact of the group is simply encoded in ν. We also note that our result
reduces to that of Ref. [9] for U(N) by recalling that ν = k/N in that case.



CHAPTER 8

Kähler and hyper-Kähler quotients

In this Chapter we study non-linear σ models (NLσMs) whose target spaces are the
Higgs phases of supersymmetric SO andUSp gauge theories by using the Kähler and hyper-
Kähler quotient constructions. We obtain the explicit Kähler potentials and develop an ex-
pansion formula to make use of the obtained potentials from which we also calculate the
curvature of the manifolds. Furthermore, we identify singular submanifolds in the obtained
manifolds, which are crucial for instance for the existence of fractional vortices.

8.1 Synopsis
The purpose of this Chapter is to explicitly construct the metric and its Kähler potential

on the Higgs branch ofN = 1 andN = 2 supersymmetric gauge theories with gauge groups
SO(N) and USp(2M) or U(1) × SO(N) and U(1) × USp(2M). The vacua of N = 1
supersymmetric gauge theories are determined by the D-term condition, D = 0, while
those of N = 2 theories are determined by both the D-term and the F -term conditions,
D = F = 0. The moduli space of vacua is obtained by the space of solutions to these
constraints modulo their gauge groups, {D = 0} /G and {D = F = 0} /G for N = 1 and
N = 2 models, respectively. In the superfield formalism, solving the D-term condition and
modding out the gauge group G, can be done simultaneously because the gauge symmetry
is in fact complexified to GC. As a bonus the Kähler potentials are directly obtained in the
superfield formalism. Although the D-term conditions of SU(N) and U(N) gauge groups
can be solved in components easily, those of SO(N) and USp(2M) are difficult to solve.
To our knowledge this has not been done yet. We use the superfield formalism to solve the
D-term conditions for SO(N) and USp(2M) gauge groups by introducing a trick. Namely,
we relax the algebra of the vector superfields V from so(N) and usp(N = 2M) to u(N)
and then introduce a Lagrange multiplier to restrict the algebra of V to so(N) and usp(2M).
We then successfully solve the superfield equations to obtain the resultant Kähler potentials.

There exists another method to obtain the moduli space of vacua, which is more familiar
in the literature; it is the algebro-geometrical method in the geometric invariant theory [157],
in which one prepares holomorphic gauge invariants made of the original chiral superfields
and looks for algebraic constraints among them. This method has been widely used in the
studies ofN = 1 supersymmetric gauge theories [232, 233, 234]. See also Refs. [235, 236]
for recent developments. In particular in Ref. [236], the moduli spaces of vacua of N = 1
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supersymmetric SO(N) and USp(2M) gauge theories are found to be Calabi-Yau cones
over certain weighted projective spaces. According to us, a weak point of the geometric
invariant theory is that one has to solve algebraic constraints among invariants in order to
calculate geometric quantities such as the metric and the curvature etc.

Compared with this situation our method provides the Kähler potentials directly. We
rewrite them in terms of holomorphic gauge invariants. Furthermore, we calculate the met-
rics and the curvatures by expanding the Kähler potentials. We confirm that a singularity
appears in the moduli space of vacua when the gauge symmetry is partially recovered, as
expected. We then study the case of U(1)× SO(N) and U(1)× USp(2M) gauge theories.
Finally, we calculate SO(N) and USp(2M) hyper-Kähler quotients and obtain their Kähler
potentials explicitly. Although only the lowest dimensional case USp(2) ' SU(2) has been
known so far [58], the higher dimensional cases are new.

We find explicitly the Kähler quotients for both the N = 1 and some of the N = 2
theories with SO and USp gauge groups, however, only at the classical level. For the
N = 2 case we are in good shape due to the well-known non-renormalization theorem on
the Higgs branch by Argyres-Plesser-Seiberg [49], which leaves the results of the metric
and Kähler potential quantum mechanically exact. The situation is not quite so good in the
N = 1 case. Quantum corrections should be considered, except in the compact directions
of the Nambu-Goldstone modes (up to overall constants: pion decay constants) which is
indeed consistent with the low-energy theorem of Nambu-Goldstone modes. Along the non-
compact directions parametrized by quasi-Nambu-Goldstone modes, the corrections are out
of control and can render rather large. All in all, the total Kähler potential is correct only
(semi-)classically for the N = 1 case and it will take the form

K = f(I1, I2, . . .) , (8.1)

with Ia beingGC invariants and f some function. In the case ofN = 1, U(N) theories, some
quantum corrections have been considered in the literature [237, 238, 239, 240, 241, 242].
To this end, we emphasize that the metric and Kähler potential was until now unknown, even
classically and the first step has been taken, which of course leaves the quantum corrections
as an important and interesting future calculation to grasp.

8.2 The SO(N) and USp(2M) Kähler quotients
The Kähler potential for an SO(N) or a USp(2M) gauge theory is given by

KSO,USp = Tr
[
QQ†e−V

′
]
, (8.2)

where V ′ takes a value in the so(N) or usp(2M) algebra. The D-flatness conditions in the
Wess-Zumino gauge are

DA = TrF

(
Q†wzT

AQwz

)
= 0 , (8.3)

with TA being the generators in the Lie algebra of SO or USp.
Instead of solving these equations explicitly, we will here discuss the breaking pattern

of the gauge symmetry and the flat directions. For this we will use both the gauge and
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the global symmetry as usually done. The vacuum expectation value of QSO
wz in the case of

SO(N) can be put on the diagonal form after fixing both the local and the global symmetries
as [233]

QSO(N)
wz =

(
AN×N , 0N×(NF−N)

)
, AN×N = diag(a1, a2, · · · , aN) , (8.4)

where we have taken a normal basis for the SO(N) group, namely gTg = 1N . Here all the
parameters ai are taken to be real and positive, which indeed parametrize the flat directions
of the Higgs branch. In generic points of the moduli space of vacua with non-degenerate
ai, the gauge symmetry is completely broken and the flavor symmetry U(NF) is broken to
U(NF −N). The moduli space of vacua can be locally written in generic points as

MSO(N) ' RN
>0 ×

U(NF)

U(NF −N)× (Z2)N−1
. (8.5)

Here the discrete unbroken group (Z2)N−1 has elements of N -by-N diagonal matrices in
the SO(N) group elements acting from the left, which have an even number of−1 elements
with the rest 1, in addition to the same matrices embedded into the U(NF) group acting
from the right. We see that the space is of cohomogeneity N , of which the isometry is
U(NF) and the isotropy at generic points is U(NF − N). The coordinates of the coset
space U(NF)/U(NF−N) correspond to Nambu-Goldstone (NG) modes of the broken flavor
symmetry, whereas the coordinates {ai} of the flat directions RN

>0 correspond to the so-
called “quasi-Nambu-Goldstone” modes [221, 222, 223, 225]. The quasi-NG modes do
not correspond to a symmetry breaking but are ensured by supersymmetry. In general,
the unbroken flavor symmetry, namely the isotropy of the space, changes from point to
point depending on the values of the parameters (the quasi-NG modes) ai’s. When two
parameters coincide, ai = aj, (i 6= j), a color-flavor locking SO(2) symmetry emerges. In
such degenerate subspace on the manifold, the above coset space attached to RN

>0 shrinks to
one with a smaller dimension;1

MSO(N) ∼ RN+1
>0 n

U(NF)

U(NF −N)× SO(2)× (Z2)N−2
. (8.6)

In general, when ni (i = 1, 2, · · · , and
∑

i ni ≤ N ) parameters among ai coincide, the
symmetry structure of the moduli space of vacua becomes

MSO(N) ∼ RN+
P
i

1
2
ni(ni−1)

>0 n
U(NF)

U(NF −N)×∏i SO(ni)× (Z2)N−1−Pi(ni−1)
. (8.7)

The most symmetric vacuum, when all parameters coincide, is realized as

MSO(N) ∼ R
1
2
N(N+1)

>0 n
U(NF)

U(NF −N)× SO(N)
. (8.8)

1 Some quasi-NG modes change to NG modes reflecting further symmetry breaking. This change of quasi-
NG and NG modes was pointed out in Refs. [224, 226]. This was also observed in the moduli space of domain
walls [243] and of non-Abelian vortices [101], where quasi-NG modes correspond to the positions of solitons.
Here the notation “n” is used for a local structure of the bundle F n B with a fiber F and a base space B.
This is not globally true; once some values of R#

>0 change, the coset space changes in general.
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This breaking pattern of the flavor symmetry is the one of non-supersymmetric SO(N)
QCD [228, 229]. The unbroken flavor symmetry in non-supersymmetric QCD is in general
further broken down as in Eq. (8.5) or (8.7) in supersymmetric QCD.

No singularities appear in the moduli space even when the parameters coincide unless
they vanish. The existence of the quasi-NG modes is strongly related to the emergence of the
Coulomb phase. When one of the ai’s vanishes, the NG part becomesU(NF)/U(NF−N+1)
but the gauge symmetry is still completely broken. Accordingly, no singularities appear.
However, when any two of the ai’s vanish, an SO(2) subgroup of the gauge symmetry is
recovered and the NG part becomes U(NF)/U(NF−N + 2). (One expects a singularity on
the manifold in the limit of two vanishing ai’s). Thus, in the Higgs phase with completely
broken gauge symmetry, the rank of Qwz has to be greater than N − 2. In this Chapter, we
consider this latter case, the models with NF ≥ N − 1.

For the USp(2M) case it is known that the flat directions are parametrized by [234, 50]

QUSp(2M)
wz = 12 ⊗

(
AM×M , 0M×(MF−M)

)
, (8.9)

where the number of flavors is evenNF = 2MF. Even in generic points with non-degenerate
{ai}, the color-flavor symmetries USp(2)M ' SU(2)M exist in the vacuum. Therefore, the
moduli space of vacua can be locally written in generic points as

MUSp(2M) ' RM
>0 ×

U(NF)

U(NF − 2M)× USp(2)M
, (8.10)

except for submanifolds where the coset space shrinks. The resulting space is of cohomo-
geneity M . Again, when ni (i = 1, 2, · · · , and

∑
i ni ≤ M ) parameters among ai coincide,

the symmetry structure becomes

MUSp(2M) ∼ RM+2
P
i ni(ni−1)

>0 n
U(NF)

U(NF − 2M)× USp(2)M−
P
i ni ×∏i USp(2ni)

.

(8.11)

The most symmetric vacuum, when all parameters coincide, is realized as

MUSp(2M) ∼ RM(2M−1)
>0 n

U(NF)

U(NF − 2M)× USp(2M)
, (8.12)

whose breaking pattern is the one of non-supersymmetric USp(2M) QCD. There are no
singularities unless one of the parameters ai vanishes. In the case of USp(2M) the complete
broken gauge symmetry needs MF ≥M .

Next we explicitly construct the Kähler potentials from the moduli space of vacua. The
D-flatness conditions (8.3), however, are rather difficult to solve.2 Without taking the Wess-
Zumino gauge, we can eliminate the superfield V ′ directly within the superfield formalism
by using a trick. To this end we note that V ′ satisfies det(e−V

′
) = 1 and

V ′TJ + JV ′ = 0 ↔ e−V
′T
Je−V

′
= J . (8.13)

2 To our knowledge the D-flatness conditions are not solved in the case of an SO or a USp, N = 1
supersymmetric gauge theory.
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Here the matrix J is the invariant tensor of the SO or USp group, gTJg = J with g ∈
SO(N), USp(2M), satisfying

JT = εJ , J†J = 1N , ε =

{
+1 for SO(N) ,
−1 for USp(N = 2M) .

(8.14)

We can choose the form of the invariant tensor J as3

J±M ≡
(

0M 1M
±1M 0M

)
, JM,odd ≡

(
J+
M

~0 T

~0 1

)
, (8.15)

where the last tensor is for the SO(N = 2M + 1) case. We will use these conventions
throughout the paper unless otherwise stated.

We are now ready to eliminate V ′ using the following trick. Let us first consider V ′

taking a value in a larger algebra, namely u(N) and then introduce an N -by-N matrix of
Lagrange multipliers4 λ to restrict V ′ to take a value in the so(N) or the usp(N = 2M)
subalgebra:

KSO,USp = Tr
[
QQ†e−V

′
+ λ

(
e−V

′T
Je−V

′ − J
)]

, (8.16)

whereQ areNF chiral superfields as earlier and V ′ is a vector superfield ofU(N). The added
term breaks the complexified gauge transformation to SO(N), USp(2M) and the equation
of motion for λ gives the constraint (8.13) which reduces the Kähler potential (8.16) back
to (8.2). Instead, we will take another path and eliminate V ′. The equation of motion for V ′

takes the form

QQ†e−V
′
+
(
λ+ ελT

)
J = 0 , (8.17)

where we have used (8.13). Combining (8.17) with its transpose: e−V ′TQ∗QT + J(λ +
ελT) = 0, then λ can be eliminated:

QQ†e−V
′
= eV

′
J†Q∗QTJ . (8.18)

Furthermore, in order to make the equation Hermitian, we multiply by
√
QQ†e−V

′ from the
left and by

√
QQ† from the right:

X2 =
(
QTJ

√
QQ†

)† (
QTJ

√
QQ†

)
, X ≡

√
QQ†e−V

′√
QQ† . (8.19)

This equation uniquely gives a positive definite matrix X , by means of its square root.
We can thus uniquely obtain V ′ from this X , if and only if the holomorphic invariants
M ≡ QTJQ satisfy rankM > N − 2, that is, if and only if the vacuum is in the full
Higgs phase. See App. F for a uniqueness proof, in the case of rankM = N − 1. It is

3 Two arbitrary choices of the invariant tensor are related by an appropriate unitary transformation u :
J ′ = uTJ u. Correspondingly, the elements of the gauge group for different choices of the invariant tensor are
related by g′ = u†gu. See App. E.

4 Hermiticity of λ is defined so that λe−V ′T
J is a vector superfield, that is, λ† = eV ′T

Jλ e−V ′T
J .
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possible to switch to Qwz from Q by the complexified gauge transformation Qwz = u′−1Q
with u′u′† = eV

′ . Without using an explicit solution for V ′, we obtain the Kähler potential
of the NLσM

KSO,USp = TrX = Tr

√(
QTJ

√
QQ†

)† (
QTJ

√
QQ†

)
. (8.20)

Thus we have obtained the explicit Kähler potentials.
Now we can naturally switch to another expression for this NLσM in terms of the holo-

morphic gauge invariants. With the help of Tr
√
AA† = TrF

√
A†A, one can rewrite the

Kähler potential (8.20) as

KSO,USp = TrF

√
MM † , MT = εM , (8.21)

where M is nothing but the holomorphic invariants of the gauge symmetry

M ≡ QTJQ , B〈A〉 ≡ detQ〈A〉 . (8.22)

The first one is the “mesonic” invariant while the second is the “baryonic” one which appears
for NF ≥ N . The two kinds of invariants should be subject to constraints in order to
correctly describe the NLσM. There are relations between the mesons and the baryons:

SO(N) : det(J) B〈A〉B〈B〉 = detM 〈A〉〈B〉, (8.23)
USp(2M) : Pf(J) B〈A〉 = Pf M 〈A〉〈A〉. (8.24)

where the N -by-N matrix M 〈A〉〈B〉 is a minor matrix defined by
(
M 〈A〉〈B〉)ij = MAiBj . The

Plücker relations among the baryonic invariants B〈A〉 are derived from the above relation.
Actually, from the invariants M and B〈A〉 with the constraints we can reconstruct Q modulo
the complexified gauge symmetry as follows. By using an algorithm similar to the Cholesky
decomposition of an Hermitian matrix, we can show that

An arbitrary n-by-n (anti-)symmetric complex matrix X can
always be decomposed as X = pTJp with a rank(X)-by-n matrix p. (8.25)

See App. E.2 for a proof of this statement. In the USp case, with a decomposition of the
meson M , we can completely reconstruct Q modulo USp(2M)C transformations. This fact
corresponds to the fact that there are no independent baryons B〈A〉 in this USp(2M) theory
and only the meson fields describe the full Higgs phase

MUSp =
{
M |M ∈ NF-by-NF matrix, MT = −M, rankM = 2M

}
. (8.26)

On the contrary, in the SO(N) case, a decomposition of M givesQmoduloO(N)C and one
finds two candidates for Q since Z2 ' OC/SOC which is fixed by the sign of the baryons.5

Therefore we have to take the degrees of freedom of the baryons into account to consider
the full Higgs phase

MSO =
{
M,B〈A〉 |M : symmetric NF-by-NF,Eq. (8.23), N − 1 ≤ rankM ≤ N

}
.

(8.27)

5 In the case of rankM = N − 1, g ∈ Z2 acts trivially on Q as g Q = Q, although all the baryons vanish.
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For large N , it is a hard task to obtain an explicit metric from the formula (8.21), since
we need to calculate the eigenvalues of MM †. Let us, therefore, consider expanding the
Kähler potential (8.21) in terms of infinitesimal coordinates around a point. Note that the
meson field M for SO(N), which is a symmetric matrix, can always be diagonalized by
using the flavor symmetry U(NF) as

MSO
vev ≡ uMuT = diag(µ1, µ2, · · · , µN , 0, · · · ) , (8.28)

with u ∈ U(NF) and the parameters µi ∈ R≥0 are the square roots of the eigenvalues of
MM †. The meson field M in the USp(2M) case, which is an anti-symmetric matrix, can
be also diagonalized as

MUSp
vev ≡ uMuT =

(
0 1
−1 0

)
⊗ diag(µ1, µ2, · · · , µM , 0, · · · ) . (8.29)

See App. E.2 for the proof. These vacuum configurations in both the cases, Mvev =
MSO

vev , M
USp
vev , are summarized as

(Mvev)ij = µi(J)ij = (J)ijµj , (8.30)

where we take the invariant tensors as (J)ij = δij for the SO(N) case, and (J)ij = δi+MF,j−
δi,j+MF

and µi+MF
≡ µi, (1 ≤ i ≤MF) in the case of USp(N = 2M).

For simplicity, let us concentrate on the SO(N) case withN = NF, and consider generic
points of the manifold with rank(Mvev) = N , that is, µi > 0 for all i. In this case, there
are no constraints for the meson field locally, and thus, the meson field M can be treated as
coordinates parametrizing the manifold locally. It is convenient to consider a small fluctua-
tion φ = M −Mvev around the vacua Mvev and expand the formula (8.21) with respect to φ.
The following formula is useful to expand a function f(X) of a matrix X in a trace around
X = X0,

Tr[f(X0 + δX)] =
1

2πi

∮
C
dλ f(λ)Tr

[
1

λ1−X0 − δX
]

(8.31)

= Tr[f(X0)] +
∞∑
n=1

1

2πn i

∮
C
dλ f ′(λ)Tr

[(
1

λ1−X0

δX

)n]
,

where the closed path C surrounds all eigenvalues of f(X) on the real positive axis but no
singularities of f(λ). We set f(λ) =

√
λ and

X = MM † , X0 = diag(µ2
1, · · · , µ2

N) , δX = Mvevφ
† + φM †

vev + φφ† . (8.32)

Since f(λ) =
√
λ has a branch point at the origin, the eigenvalues µi cannot be zero in this

formula. To proceed the calculation, we need to perform the integrations

An(µ1, · · · , µn) ≡ 1

2πi

∮
dλ√
λ

n∏
i=1

1

λ− µ2
i

. (8.33)
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The results of the integrations can be expressed in terms of the elementary symmetric poly-
nomials, C(m)

k1k2···kn , (m ≤ n) defined by

n∏
i=1

(t+ µki) =
n∑

m=0

C
(m)
k1···knt

n−m , Pk1k2···kn ≡
∏
m>n

(µkm + µkn) , (8.34)

where we also use a symmetric polynomial Pk1···kn . The first few integrations give

A1(µ1) =
1

µ1

, A2(µ1, µ2) = − 1

µ1µ2(µ1 + µ2)
,

A3(µ1, µ2, µ3) =
C

(1)
123

C
(3)
123P123

=
µ1 + µ2 + µ3

µ1µ2µ3(µ1 + µ2)(µ2 + µ3)(µ3 + µ1)
,

A4(µ1, µ2, µ3, µ4) = −C
(1)
1234C

(2)
1234 − C(3)

1234

C
(4)
1234P1234

. (8.35)

After this preparation, we obtain the first few terms of the expansion of the Kähler potential
as

KSO =
1

2

∑
i,j

φijφ
†
ji

µi + µj

− 1

2

∑
i,j,k

µi φijφ
†
jkφki

(µi + µj)(µj + µk)(µk + µi)
+ c.c.

+
1

2

∑
i,j,k,l

µjµkC
(1)
ijkl

Pijkl
φijφjkφklφ

†
li + c.c.

+
1

2

∑
i,j,k,l

µjµlC
(1)
ijkl

Pijkl
φijφjkφ

†
klφ
†
li −

1

4

∑
i,j,k,l

C
(3)
ijkl

Pijkl
φijφ

†
jkφklφ

†
li

+ Kähler trf. +O(φ5) . (8.36)

A coordinate singularity emerges in the limit µi → 0 since the expansion formula (8.31) is
not applicable for µi = 0. The above result gives enough information to calculate the scalar
curvature R of the manifold at M = Mvev in the SO(N) case, with a Kähler metric gIJ̄

R|φ=0 = −2gIJ̄∂I∂J̄ log det g
∣∣∣
φ=0

= 2
∑
i>j

(
1

µi + µj
+
∑
k

µk
(µk + µi)(µk + µj)

)
> 0 , (8.37)

where the indices I, J̄ label the components as φI = φij, (i ≥ j). This result shows that
the coordinate singularity with rank(Mvev) = N − 1 can be removed by taking appropriate
coordinates and, on the other hand, the submanifold with rank(Mvev) < N−1 is a curvature
singularity of the manifold. That is, the curvature singularity lies in the region corresponding
to the Coulomb phase of the original gauge theory, as we expected.
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The expansion of the Kähler potential in the USp(2M) case, we obtain the result (8.36)
with the substitution φ → φJ†, φ† → Jφ† and the curvature obtained using this expanded
potential reads

R|φ=0 = 4
M∑
i>j

(
1

µi + µj
+

M∑
k

4µk
(µk + µi)(µk + µj)

)
> 0 . (8.38)

This result shows that the submanifold with rank(Mvev) < 2(M − 1) is a curvature singu-
larity of the manifold. This expansion, however, does not reveal the singularity appearing
at rank(Mvev) = 2(M − 1). To detect this singularity, we consider a deformation of the
Kähler potential

KUSp,deformed = Tr
√
MM † + ε2 , (8.39)

and make a similar expansion (see App. G). Taking now only one eigenvalue, say µ1 → 0
we find a term in the scalar curvature

lim
µ1→0

R|φ=0 ⊃
2

ε
, (8.40)

which shows the presence of a singularity for one vanishing eigenvalue, that is correspond-
ing to an unbroken USp(2) ' SU(2) symmetry.

8.3 The U(1) × SO(N) and U(1) × USp(2M) Kähler quo-
tients

Next, we would like to consider a Kähler quotient with gauging an overall U(1) phase in
addition to the SO(N) or USp(2M) gauge symmetry. We turn on the FI D-term associated
with the additional U(1) gauge group. The Kähler potential can be written as

KU(1)×(SO,USp) = Tr
[
QQ†e−V

′
e−Ve + λ

(
e−V

′T
Je−V

′ − J
)]

+ ξVe , (8.41)

where Ve is the vector multiplet of the additional U(1) gauge field. We have already solved
the SO(N) andUSp(2M) part in the previous Section, so the Kähler potential can be rewrit-
ten as

KU(1)×(SO,USp) = Tr
[√

MM †
]
e−Ve + ξVe . (8.42)

The equation of motion for Ve can be solved by Ve = log
[
Tr
(√

MM †
)
/ξ
]
. Plugging this

into the Kähler potential, we obtain

KU(1)×(SO,USp) = ξ log
[
Tr
(√

MM †
)]

, M ≡ QTJQ . (8.43)
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In the case of N = NF, we can expand the Kähler potential around a point M = Mvev by
using the same method as in Sec.8.2,

KU(1)×(SO,USp) =
ξ

2
∑N

k=1 µk

 N∑
i,j

φij(φij)
†

µi + µj
− 1

2
∑N

k=1 µk

∣∣∣∣∣
N∑
i=1

(J†φ)ii

∣∣∣∣∣
2


+ Kähler trf. +O(φ3) . (8.44)

Here we can confirm that the mode φ ∝ Mvev corresponding to U(1)C is not effective in
this Kähler potential. Therefore, with the constraint Tr [φJ†] = 0, we can write the Kähler
potential to fourth order as

KU(1)×(SO,USp) =
ξ∑N

k=1 µk

[
KSO,USp − 1

8
∑N

l=1 µl

∣∣∣∣∣∑
i,j

φijφ
†
ji

µi + µj

∣∣∣∣∣
2

(8.45)

− 1

16
∑N

l=1 µl

∣∣∣∣∣∑
i,j

(φJ†)ij(φJ†)ji
µi + µj

∣∣∣∣∣
2 ]

+ Kähler trf. +O(φ5) .

from which we obtain the curvatures as

ξRU(1)×(SO,USp) = R(SO,USp)

N∑
i=1

µi + 2N̂ε(N̂ε + 1) , (8.46)

where N̂ε is the complex dimension of the manifold

N̂ε ≡ dimCMvacuum
U(1)×(SO,USp) =

N(N + ε)

2
− 1 , ε =

{
+1 for SO ,
−1 for USp .

(8.47)

A typical property of these theories is the existence of curvature singularities of the
Kähler manifold. Since the Coulomb phase attached to the Higgs phase in the original gauge
theory is strongly related to a singularity, the curvature singularity with 0 < rank(M) <
N − 1 still survives after the U(1) gauging for the case of N ≥ 3, while gauging U(1) in
the SU(N) case removes the singularity.

8.4 Examples

8.4.1 The SO(2) quotient (SQED) and the U(1)× SO(2) quotient

The first example is SO(2) with NF = 1. We have a complexified gauge symmetry
SO(2)C, so the corresponding target space is

MSO(2)
NF=1 = Q/∼ , Q ∼ g′Q , g′ ∈ SO(2)C , (8.48)
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where Q = (Q+, Q−)T. In general, matrices in SO(2)C can be expressed as

g′ =
(
v′ 0
0 1/v′

)
, v′ ∈ C∗ . (8.49)

This simply shows the fact that SO(2) ' U(1) under which Q+ has charge +1 while Q−
has charge −1. This is nothing else than supersymmetric QED. The target space apparently
seems to be a weighted complex projective space which is not a Hausdorff space

MSO(2)
NF=1 = WCP 1

(1,−1) . (8.50)

However, we have to be careful. Sick points (Q+, Q−) = (Q+, 0), (0, Q−) for Q+ 6= 0 and
Q− 6= 0 are forbidden by the D-term condition |Q+|2 − |Q−|2 = 0 in the Wess-Zumino
gauge. To understand the true well-defined target space, we take the holomorphic invariant
of this model to be

M = 2Q+Q− . (8.51)

This is a good coordinate on the target space and the Kähler potential is given by

K
SO(2)
NF=1 = |M | . (8.52)

There is a conical singularity at the origin and the true target space is

MSO(2)
NF=1 = C/Z2 . (8.53)

At the singularity, the gauge symmetry is restored and the vector multiplet obtains a massless
field. In general, singularities in a classical moduli space lead to the appearance of some
massless fields. Kähler potentials usually acquire quantum corrections and they may make
such classical singular manifolds regular.

The second example is U(1)× SO(2) with NF = 1. We turn on the FI parameter ξ and
we have

MU(1)×SO(2)
NF=1 = Q/∼ , Q ∼ VeV

′Q , Ve ∈ U(1)C , V ′ ∈ SO(2)C . (8.54)

We can explicitly show that

geg
′ =
(
v1 0
0 v2

)
, v1, v2 ∈ C∗ . (8.55)

Here we impose that the gauge symmetry U(1)× SO(2) is free, such that |Q| 6= 0. Hence,
the target space is just one point.

Next, let us consider NF = 2 with the SO(2) and the U(1)× SO(2) gauge groups. The
scalar field is a 2-by-2 complex matrix

Q =

(
Q+1 Q+2

Q−1 Q−2

)
≡
(

~Q+

~Q−

)
. (8.56)
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The holomorphic invariants of the SO(2) part are on the form

MSO(2) =
{
QTJQ, detQ

}
(8.57)

=

{(
2Q−1Q+1 Q+1Q−2 +Q+2Q−1

Q+1Q−2 +Q+2Q−1 2Q+2Q−2

)
, Q+1Q−2 −Q+2Q−1

}
.

We have to remove the points ~Q+ = 0 and ~Q− = 0, where all the holomorphic invariants
vanish M = 0. The moduli spaces of vacua turn out to be

MSO(2)
NF=2 = WCP 3

(1,1,−1,−1) − {MSO(2) = 0} = ((C2)∗+ × (C2)∗−)/C∗ , (8.58)

MU(1)×SO(2)
NF=2 =

(
(C2)∗/C∗

)× ((C2)∗/C∗
)

= CP 1 × CP 1. (8.59)

Since positive real eigenvalues λ1 and λ2 satisfy
√
λ1 +

√
λ2 =

√
λ1 + λ2 + 2

√
λ1λ2, the

Kähler potential can be easily shown to be

K
SO(2)
NF=2 =

√
TrMM † + 2

√
detMM † = 2

√
| ~Q+|2| ~Q−|2 , (8.60)

K
U(1)×SO(2)
NF=2 =

ξ

2
log | ~Q+|2 +

ξ

2
log | ~Q−|2 . (8.61)

The prefactor ξ/2 in Eq. (8.61) will turn out to have a significant difference from the usual
prefactor ξ of the Kähler potential for usual CP 1, see Eq. (1.113), when we will consider
1/2 BPS solitons.

It is straightforward to extend this to the case with generic NF. The manifolds are on the
form

MSO(2)
NF

= WCP 2NF−1
(1NF

,−1NF
) − {MSO(2) = 0} = ((CNF)∗+ × (CNF)∗−)/C∗ ,

MU(1)×SO(2)
NF

=
(
(CNF)∗/C∗

)× ((CNF)∗/C∗
)

= CPNF−1 × CPNF−1 . (8.62)

The Kähler potential for the latter manifold can be obtained by merely replacing the two
vectors Q1,2 by NF vectors in Eq. (8.61). Then the meson field becomes an NF-by-NF

matrix, however, only two eigenvalues λ1, λ2 of MM † take non-zero values and in this case
we have the following identity

det(λ1NF
−MM †) = λNF−2 det

(
λ12 − (QQ†)J†(QQ†)TJ

)
. (8.63)

From this characteristic polynomial, we can read off

λ1 + λ2 = 2| ~Q+|2| ~Q−|2 + 2| ~Q+
~Q†−|2 , (8.64)

λ1λ2 =
(
| ~Q+|2| ~Q−|2 − | ~Q+

~Q†−|2
)2

. (8.65)

Therefore, we find also in the case of NF flavors

K
SO(2)
NF

=
√
λ1 +

√
λ2 = 2

√
| ~Q+|2| ~Q−|2 . (8.66)
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8.4.2 The USp(2) quotient
This case completely reduces to the SU(2) case with NF flavors. It is not difficult to

show that only two eigenvalues λ1, λ2 of MM † take non-zero values and they coincide

λ1 = λ2 =
1

2
Tr[MM †] = det(QQ†) , (8.67)

and this indeed yields the Kähler potential for the SU(2) case

K
USp(2)'SU(2)
NF

= Tr[
√
MM †] = 2

√
det(QQ†) . (8.68)

We find explicitly the Z2-conifold singularity at the origin in this model.

8.4.3 The USp(4) quotient
By “diagonalizing” M by Mij = µiJij , we find two non-vanishing eigenvalues both

with multiplicity two, that is λ1 = λ3 = µ2
1 and λ2 = λ4 = µ2

2 and they can be written as

λ1 + λ2 =
1

2
Tr[MM †] , λ1λ2 =

∑
〈A〉
|P〈A〉|2 , (8.69)

where P〈A〉 is the Pfaffian of a minor matrix

P〈A1A2A3A4〉 ≡ 3MA1[A2MA3A4] . (8.70)

In this case where we have USp(4) i.e. M = 2, thus it can be written as∑
〈A〉
|P〈A〉|2 =

1

8

(
Tr[MM †]

)2 − 1

4
Tr[(MM †)2] . (8.71)

Since the right hand sides of both the equations in Eq. (8.69) are invariant under the flavor
transformation performing the diagonalization, we find for generic number of flavors NF

K
USp(4)
NF

= 2
(√

λ1 +
√
λ2

)
= 2

√√√√1

2
Tr[MM †] + 2

√∑
〈A〉
|P〈A〉|2 . (8.72)

Considering a minimal case with MF = M = 2, with the following parametrization

M =


0 φ1 φ2 φ3

−φ1 0 χ3 −χ2

−φ2 −χ3 0 χ1

−φ3 χ2 −χ1 0

 , (8.73)

we find Pf(M) = ~φ · ~χ and the simple form of the Kähler potential

K
USp(4)
NF=4 = 2

√
1

2
Tr[MM †] + 2|Pf(M)| = 2

√
|~φ|2 + |~χ|2 + 2|~φ · ~χ| . (8.74)
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Manifestly, we can observe an orbifold singularity on the submanifold

|~φ|2 + |~χ|2 6= 0 , Pf(M) = ~φ · ~χ = 0 , (8.75)

of which the rank is 2M − 2 = 2, since the Pf(M) ∈ C is an appropriate coordinate
describing the orthogonal direction to the submanifold and the term

√|Pf(M)|2 emerges in
the potential. In a generic region away from this singular submanifold, the scalar curvature
is given by

R =
20√

|~φ|2 + |~χ|2 + 2|~φ · ~χ|
, (8.76)

and is finite even in the vicinity of the submanifold.

8.4.4 The SO(3) quotient
The Kähler quotient for SO(3) with NF flavors reads

K
SO(3)
NF

=
√
λ1 +

√
λ2 +

√
λ3 , (8.77)

and it is obtained by solving the following algebraic equations

(K2 − A1)2 = 4A2 + 8
√
A3K , (8.78)

where the definitions are

A1 ≡ λ1 + λ2 + λ3 = Tr[MM †] ,

A2 ≡ λ1λ2 + λ3λ2 + λ3λ1 =
1

2
(Tr[MM †])2 − 1

2
Tr[(MM †)2] ,

A3 ≡ λ1λ2λ3 . (8.79)

A solution with a real number satisfying K2 ≥ A1 > 0 should be unique. Here
√
A3 does

not imply a singularity immediately. In the case of NF = N = 3, we can rewrite it in terms
of the baryon field B as√

A3 =
√

det(MM †) =
√
| detM |2 = |B|2 , (8.80)

and around the submanifold with B = 0, B is an appropriate coordinate around the sub-
manifold. With K0 = K||B|2=0, we find

K
SO(3)
NF=3 = K0 +

2|B|2
K2

0 − A1

+O(|B|4) . (8.81)

Since K2
0 − A1 = 0 implies that A2 = |B|2 = 0, which in turn implies that rankM ≥

N − 2 = 1, this expansion tells us that the submanifold with rankM = N − 1 = 2 is not
singular.

Let us now consider this simple example of SO(3) with NF = 2. The result of the
Kähler potential is the same as in the SO(2) case with NF = 2

K
SO(3)
NF=2 =

√
TrMM † + 2| detM | . (8.82)
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8.5 The SO(N) and USp(2M) hyper-Kähler quotients
Our next task is lifting up the SO(N) and USp(N = 2M) Kähler quotients of the

previous Subsection to the hyper-Kähler quotients as we did for the U(N) (hyper-)Kähler
quotient in Sec. 1.3. We leave the issues of the hyper-Kähler quotients of U(1)×SO(N) and
U(1)× USp(2M) for the end of this Chapter. In order to construct the SO(N), USp(2M)
hyper-Kähler quotient we need to consider N = 2 hypermultiplets. Hence, we consider an
N = 2 extension of the N = 1 Kähler potential (8.16), together with the superpotential

K̃SO,USp = Tr
[
QQ†e−V

′
+ Q̃†Q̃eV

′
+ λ

(
e−V

′T
Je−V

′ − J
)]

, (8.83)

W = Tr
[
QQ̃Σ′ + χ

(
Σ′TJ + JΣ′

)]
, (8.84)

where (V ′,Σ′) denote the SO(N) or USp(2M) vector multiplets, (Q, Q̃†) are NF hyper-
multiplets in the fundamental representation of SO(N) or USp(2M), and (λ, χ) are the
Lagrange multipliers which are N -by-N matrix valued superfields.

We can rewrite the Kähler potential (8.83) as follows

K̃SO,USp = Tr
[
QQ†e−V

′
+ JTe−V

′
JQ̃TQ̃∗

]
= Tr

[
QQ†e−V ′

]
, Q ≡

(
Q, JQ̃T

)
, (8.85)

where we have used eV ′T = JTe−V
′
J . This Kähler potential is nothing but the N = 1

Kähler potential of SO(N) and USp(2M) with Q, a set of 2NF chiral superfields. We can
straightforwardly borrow the result of Sec. 8.2 and hence the Kähler potential reads

K̃SO,USp = Tr
[√
MM†

]
, M≡ QTJQ . (8.86)

The constraint coming from the superpotential (8.84) is

QQ̃J = JQ̃TQT ⇒ QJ̃QT = 0 , with J̃ ≡
(

0 1NF

−ε1NF
0

)
. (8.87)

Therefore, we again find the constraints for the meson fieldM
MT = εM , MJ̃M = 0 , N − 2 < rankM≤ N . (8.88)

As well-known, the SO(N) case has a USp(2NF) flavor symmetry while the USp(2M)
case has an O(2NF) flavor symmetry. Therefore the USp(2NF) and O(2NF) isometries act
on the SO(N) and USp(2M) hyper-Kähler quotients, respectively. The resultant spaces
can be written locally in generic points as

MHK
SO(N) ' RN

>0×
USp(2NF)

USp(2NF − 2N)× (Z2)N−1
⊃ RN

>0 ×
U(NF)

U(NF −N)× (Z2)N−1
,

(8.89)

MHK
USp(2M) ' RM

>0×
SO(2NF)

SO(2NF − 4M)× USp(2)M
⊃ RM

>0 ×
U(NF)

U(NF − 2M)× USp(2)M
,

(8.90)
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for the SO(N) and USp(2M) hyper-Kähler quotients, respectively. These are hyper-Kähler
spaces of cohomogeneity N and M , respectively.6 The right-most ones denote the corre-
sponding SO(N) and USp(2M) Kähler quotients given in Eqs. (8.5) and (8.10), respec-
tively. These Kähler spaces are special Lagrangian subspaces of the hyper-Kähler spaces.
As in the Kähler cases (8.5) and (8.10), the isotropy (unbroken flavor symmetry) changes
from point to point. It is enhanced when some eigenvalues coincide.

Let us make a comment on the relation to the instanton moduli space. In Eq. (8.90)
the simplest case of the USp(2) ' SU(2) hyper-Kähler quotient was previously found in
Ref. [58] to be

MHK
USp(2)'SU(2) ' R>0 × SO(2NF)

SO(2NF − 4)× USp(2)
. (8.91)

This is a hyper-Kähler cone and is particularly important because the single instanton moduli
space of an SO(2NF) gauge theory is the direct product of this space and C2 i.e. the position.
Here R>0 parametrizes the size while the coset part parametrizes the orientation of a single
BPST instanton embedded into the SO(2NF) gauge group. The moduli space of k instantons
in SO(N) and USp(2M) gauge theories are known to be given by USp(2k) and O(k)
hyper-Kähler quotients, respectively [24, 60, 61]. Compared with our spaces in Eqs. (8.89)
and (8.90), the instanton moduli spaces contain adjoint fields of USp(2k) and O(k) too and
thus are larger. Inclusion of adjoint fields remains as a difficult but important problem.

8.6 Discussion
We have explicitly constructed the Kähler potentials for NLσMs describing the Higgs

phase of N = 1 supersymmetric SO(N) and USp(2M) gauge theories. The key point in
the construction lies in the use of taking the gauge symmetry to be U(N) and restricting the
algebra down to either so(N) or usp(2M) with Lagrange multipliers. The result is written
both in terms of the component fields and the holomorphic invariants, i.e. the mesons and
the baryons of the theories. Because the obtained result is difficult to manage in practice
in the large N (NF) limit, we have developed an expansion around the vacuum expectation
values of the meson field, and obtained the scalar curvature of both theories, i.e. SO(N)
and USp(2M). Furthermore, we have made the same considerations for the case of U(1)×
SO(N) and U(1) × USp(2M), and obtained the Kähler potential, metric, expansion and
curvature also in these cases.

Following the same strategy as in the Kähler quotient case, we have been able to obtain
the hyper-Kähler quotient in the case of SO(N) and USp(2M) gauge theories, simply by
rewriting the fields by means of the algebra, to fields with 2NF flavors, all in the fundamental
representation and we confirm the flavor symmetry of the SO(N) hyper-Kähler quotient to
be USp(2NF) and for USp(2M) it is O(2NF).

6 Any smooth hyper-Kähler manifold of cohomogeneity one, must be the cotangent bundle over the pro-
jective space, T ?CPNF−1 or flat space [244]. For the U(1) hyper-Kähler quotient with NF flavors, the space
is of cohomogeneity one: R>0 × SU(NF)/SU(NF − 2). This space is blown up to a smooth manifold
T ?CPNF−1 once the FI parameters are introduced for the U(1) gauge group. The result of Ref. [244] implies
that hyper-Kähler spaces of cohomogeneity one in Eqs. (8.89) and (8.90) must have a singularity.
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A significant feature of those NLσMs, is that a point in the target space can reach within
a finite distance, submanifolds corresponding to unbroken phases of the gauge theories. We
have observed that a curvature singularity emerges there. If we consider a generic gauge
group with a generic representation as the original gauge theory, we can observe such sin-
gularities in many NLσMs unlike the well-known U(N) (Grassmannian) case. The NLσMs
we have considered here can be regarded as test cases for those theories.

Before closing this Chapter we would like to comment on the hyper-Kähler quotient of
U(1) × SO(N) and U(1) × USp(2M). We succeeded in constructing the hyper-Kähler
quotient of SO(N) and USp(2M) thanks to the fact that JQ̃T is in the fundamental rep-
resentation, which is the same representation as Q. Although, we want to make use of the
same strategy for U(1)×SO(N) and U(1)×USp(2M) as before, JQ̃T still has charge −1
with respect to the U(1) gauge symmetry while Q has U(1) charge +1. Therefore, it is not
easy to construct the U(1)× SO(N) and U(1)× USp(2M) hyper-Kähler quotient and we
will not solve this problem here.

An extension to hyper-Kähler quotients with other gauge groups, namely exceptional
groups is also an interesting future problem. As in Eq. (8.16) for SO(N) and USp(2M)
Kähler quotients, they may be achieved by introducing a proper constraint. For instance for
an E6 quotient, Γijk

(
eV
′)i

l

(
eV
′)j

m

(
eV
′)k

n
− Γlmn = 0 is a candidate constraint to embed

E6 into U(27), where Γijk is the third-rank invariant symmetric tensor of E6. This will be
achieved by introducing a Lagrange multiplier λlmn belonging to the rank-3 anti-symmetric
representation. Since the study of vortices in U(1) × G′ with G′ being exceptional groups
has been raised in Ref. [6], lumps in these Kähler quotients are also interesting subjects to
be studied.

We should also consider hyper-Kähler quotients for other representations. In particular,
including adjoint fields into our work is important because the resultant spaces appear as
multi-instanton moduli spaces of SO(N) and USp(2M) gauge theories.

In certain models it has been proposed that the moduli space of vacua admits a Ricci-
flat (non-compact Calabi-Yau) metric [236]. In the case of the SU(NC) Kähler quotient,
a Ricci-flat metric was obtained by deforming the Kähler potential (1.95) of the original
SU(NC) gauge theory to K = f

(
Tr[QQ†e−V ′ ]

)
with an unknown function f , and solving

the Ricci-flat condition (the Monge-Ampère equation) for f [218]. The metric turns out to
be the canonical line bundle over the Grassmann manifold GrNF,NC

[245]. It is certainly
worthwhile to construct a Ricci-flat metric also on the SO and USp Kähler quotients.

In the case of theN = 2 hyper-Kähler NLσM, the only possible potential consistent with
eight supercharges is written as the square of a tri-holomorphic Killing vector [246, 247].
The explicit potentials can be found for instance for T ?CPN−1 [248, 249, 250], toric hyper-
Kähler manifolds [251], T ?GrN,M [167, 168] and T ?Fn [70]. In terms of the hyper-Kähler
quotients these potentials are obtained as usual masses of hypermultiplets in the correspond-
ing N = 2 supersymmetric gauge theories [167, 168]. For this massive deformed hyper-
Kähler NLσM one can construct domain walls which are other fundamental 1/2 BPS ob-
jects; 1/2 BPS domain wall solutions in the U(N) hyper-Kähler quotient, namely T ?GrN,N ,
see Refs. [29, 98, 99]. Constructing a massive deformation and domain wall solutions in
U(1)× SO(N) and U(1)× USp(2M) hyper-Kähler quotients remain as future problems.





CHAPTER 9

Non-linear σ model lumps

The 1/2 BPS lumps in the U(1)×SO(2M) and U(1)×USp(2M) Kähler quotients and
their effective descriptions are studied in this Chapter. In this connection, a general relation
between the moduli spaces of vortices and lumps is discussed. We find a new singular limit
of the lumps with non-vanishing sizes in addition to the ordinary small lump singularity.
The former is due to the existence of singular submanifolds in the target spaces. This fact
is also important with respect to fractional vortices and lumps. Finally, we identify the
normalizable zero-modes of a single lump configuration (with lump number one).

9.1 Lumps in U(1)×G′ Kähler quotients
In this Chapter we will study non-linear σ model (NLσM) lumps which are 1/2 BPS con-

figurations. Lumps are stringy topological textures extending for instance in the x3 direction
in d = 1 + 3 dimensional spacetime and are supported by the non-trivial second homotopy
group π2(M) associated with a holomorphic map from the 2 dimensional spatial plane
z = x1 + ix2 to a 2-cycle of the target space of the NLσM. We will consider the C-plane
together with the point at infinity, that is z ∈ C ∪ {∞} ' S2, which is mapped into the tar-
get space. Lumps in non-supersymmetric SO(N) theories were studied in Refs. [228, 229]
where the second homotopy group is π2[SU(N)/SO(N)] ' Z2 and therefore those lumps
are non-BPS. Here we do not consider this type of lumps. We will first study BPS lumps in
the NLσM of U(1) × G′ Kähler quotients in general and then we investigate lumps in the
case of G′ = SO,USp which have been constructed in Chap. 8.

In the NLσM of U(1) × G′ Kähler quotients, (inhomogeneous) complex coordinates
{φα} of the Kähler manifold, which are the lowest scalar components of the chiral su-
perfields, are given by some set of holomorphic G′ invariants I i modulo U(1)C, namely
φα ∈ {I i}//U(1)C. Static lump solutions can be obtained by just imposing φα to be a
holomorphic function with respect to z

φα(t, z, z̄, x3)→ φα(z;ϕi) , (9.1)

where ϕi denote complex constants. The tension of the lumps can be obtained by plugging
the solution back into the Lagrangian

T = 2

∫
C
Kαβ̄(φ, φ̄) ∂φα∂̄φ̄β̄

∣∣∣∣
φ→φ(z)

= 2

∫
C
∂̄∂K(φ, φ̄)

∣∣∣∣
φ→φ(z)

, (9.2)
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where K is the Kähler potential and Kαβ̄ = ∂α∂̄β̄K is the Kähler metric. We would like to
stress that all the parameters ϕi are nothing but the moduli parameters of the 1/2 BPS lumps.

We assume that the boundary of z → ∞ is mapped to a single point φα(z) → φαvev on
the target space. Since the functions φα(z) should be single valued, φα(z) can be expressed
with a finite number of poles as

φα(z) = φαvev +
k∑
i=1

φαi
z − zi +O(z−2) . (9.3)

Strictly speaking, we have to change patch of the target manifold at the poles to describe the
solutions correctly. To describe the lump solutions, it is convenient to use the holomorphic
G′ invariants I i satisfying the constraints as homogeneous coordinates. The holomorphic
map is expressed by the homogeneous coordinates I i(z) which are holomorphic in z

I i(z) = I ivevz
niν +O(zniν−1) , (9.4)

where ni is the U(1) charge of the holomorphic G′ invariant I i, and ν is some number. I ivev

denotes the vacuum expectation value of I i at spatial infinity. Since all ni ν must take value
in Z>0, we can express ν = k/n0 with the greatest common divisor (GCD) n0 of {ni} and
k a non-negative integer. The integer k will be found to be the topological winding number.
These polynomials are the basic tools to study lump solutions and their moduli and φα(z)
can be written as ratios of these polynomials, namely U(1)C invariants, which are known as
rational maps in the Abelian case.

There is a remark in store for constructing lump solutions. If a holomorphic map (9.4)
touches the unbroken phase of the original gauge theory at some point, the behavior of
the lump is ill-defined there in terms of the NLσM. Generally speaking, as we will see in
examples later, the lump configuration becomes singular at that point. Therefore, we have to
exclude such singular configurations and all points in the base manifold C must be mapped
to the full Higgs phase by the holomorphic map (9.4). We will denote this condition the lump
condition. In other words, there exist limits where lump configurations become singular by
varying the moduli parameters. For instance, the invariants I i(z) are prohibited from having
common zeros by the lump condition. Since common zeros cannot be detected even in
the vicinity of a corresponding point in the base space, an emergence of common zeros
indicates a small lump singularity, which is well-known for lumps in the CP n model. The
lump condition requires non-vanishing size moduli there. As we will show in examples later,
this situation implies the emergence of a local vortex. The lump condition is stronger than
the condition of no common zeros in the invariants, except for the U(N) case [116], where
in fact both the conditions are equivalent. The difference between the two conditions above
implies the existence of limits where a lump configuration becomes singular with a non-
vanishing size. This is a typical property of lumps in a NLσM with a singular submanifold.
We will see explicit examples of this property later.

9.2 Lump moduli spaces vs. vortex moduli spaces
As a NLσM can be obtained in the strong gauge coupling limit of the gauge theory,

lump solutions in such NLσMs can also be given as that limit of semi-local vortex solutions,
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whose configurations can smoothly be mapped to the Higgs phase. Therefore, lump solu-
tions are closely related to semi-local vortices in the original gauge theory, even with a finite
gauge coupling. Lumps in the U(N) Kähler quotient, namely in the Grassmann σ model,
have been studied previously in Refs. [75, 76, 77, 115, 116]. In fact, the dimensions of both
the moduli spaces coincide dimCMk-vortex

U(N),NF
= dimCMk-lump

U(N),NF
= kNF [9, 136, 252]. It has

been found that the moduli space of k lumps in the Grassmann σ model is identical to that of
k semi-local vortices with the lump condition in Ref. [116]. Hence, the inclusive relation is
Mk-vortex

U(N),NF
⊃Mk-lump

U(N),NF
. The lump condition excludes subspaces ofMk-vortex

U(N),NF
correspond-

ing to the minimal size vortices whose size is of order of the inverse gauge coupling.
In this Section we will discuss the relation between moduli spaces for lump solutions

and vortex solutions in the U(1) × SO(N) and U(1) × USp(2M) cases. Here we take
N = NF and detMvev 6= 0 for simplicity. The dimension of the moduli space of k vortices
in a U(1)×G′ gauge theory (NF = N ) has been found to be [6]

dimCMk-vortex
U(1)×G′ =

kN2

n0

, (9.5)

with N = 2M for USp(2M). In the following, we will count the dimensions of the lump
moduli spaces. (We will use the same characters for the lowest scalar components of chiral
superfields as for the superfields themselves).

In the U(1)×SO(2M) case (N = 2M), lump solutions with fixed boundary conditions
are given by taking the following polynomials as the holomorphic invariants I i = {M,B}
defined in (8.22). Their U(1) charges are {2, 2M}, respectively. Thus, their GCD is n0 = 2
and we find

M(z) = Mvevz
k +O(zk−1) , B(z) = Bvevz

kM +O(zkM−1) , (9.6)

with k ∈ Z>0. Note that we should not neglect the baryon field B, although the baryon
field B is dependent on M . This is because the baryon field B determined by M(z) is not
necessarily holomorphic everywhere in the complex plane C:

det(J)B(z)2 = detM(z) . (9.7)

Generically, this gives 2kM constraints for moduli parameters. For instance, with a single
lump solution in the U(1)×SO(2) case, a general form of M(z) is given by setting Mvev =
σ1 and k = 1

M(z) =

(
b z − a

z − a c

)
→ detM(z) = bc− (z − a)2 . (9.8)

The constraint (9.7) requires detM(z) to be exactly a square of a polynomial and then we
find the non-trivial conditions; b = 0 or c = 0 where the intersection point b = c = 0 is ex-
cluded by the lump condition. These two disconnected solutions correspond to two different
types of lumps wrapping different CP 1’s ofMU(1)×SO(2)

NF=2 = CP 1 × CP 1 in Eq. (8.59). For
generic k-lump configurations, we can count the degrees of freedom of the moduli parame-
ters as

dimCMk-lump
SO(2M) = #moduli in M(z) + #moduli in B(z)−#constraints

= k
(2M)(2M + 1)

2
+ kM − 2kM = 2kM2 . (9.9)
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In the U(1)×SO(2M+1) case, the U(1) charges of the invariants {M,B} are {2, 2M+1}.
Hence their GCD is n0 = 1 and lump solutions are given by the following polynomials

M(z) = Mvevz
2k +O(z2k−1) , (9.10)

B(z) = Bvevz
(2M+1)k +O(z(2M+1)k−1) . (9.11)

The dimension of the k-lump moduli space in this case is generically given by

dimCMk-lump
SO(2M+1) = 2k

(2M + 1)(2M + 2)

2
+ k(2M + 1)− 2k(2M + 1)

= k(2M + 1)2 . (9.12)

These two results are the same as those of the 1/2 BPS vortex moduli spaces derived from
the index theorem [6], see Eq. (9.5). That is, at least for generic points of the lump moduli
space, the moduli for the lump solutions are sufficient to describe the vortex moduli space
in the original gauge theory, and there are no internal moduli unlike the orientational moduli
CPN−1 of the U(N) case with NF = N flavors. This property is significantly different
from the U(N) case with the minimal number of flavors NF = N , where only local vortices
carrying the orientational moduli exist and the strong coupling limit of them are not lumps
but singular objects of zero sizes.

In the U(1) × USp(2M) case, the baryon field is completely described by the meson
fields and there are no constraints

M(z) = Mvevz
k +O(zk−1) , B(z) = (PfJ)−1Pf(M(z)) . (9.13)

Therefore, the number of complex parameters in M(z) is simply given by

#moduli in M(z) = k
2M(2M − 1)

2
= dimCMk-vortex

USp(2M) − kM . (9.14)

Note that it is different from the dimension of the vortex moduli space. This deficit num-
ber M for each lump can be understood as follows. In this case, color-flavor symmetries
USp(2)M ' SU(2)M survive even at a generic point in the vacuum as we explained below
Eq. (8.9). These surviving symmetries are broken in a vortex configuration and this means
that the vortex configuration has orientational moduli (CP 1)M as NG modes. These modes
are expected to be localized in the Coulomb phase of the original gauge theory, which cor-
responds to the curvature singularity of the NLσM, and therefore, cannot be detected as
moduli of lump solutions in the NLσM. Therefore, roughly speaking, we guess that

Mk-vortex
USp(2M) ∼Mk-singular lump

USp(2M) × (CP 1)kM , (9.15)

whereMk-singular lump
USp(2M) is the would-be lump moduli space which is parametrized by the com-

plex parameters in the meson field M(z). Emergence of these internal moduli is strongly
related to singular configurations of lumps.1 Actually, to get regular solutions for lumps in

1 This situation is similar to the case of a U(N) gauge theory with NF = N flavors. The gauge theory has
a non-Abelian vortex whose internal moduli space is CPN−1. But the strong gauge coupling limit yields a
NLσM of only a point and there are no lump solutions.
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any NLσM, we have to require the lump condition, which means that the rank of the me-
son M should be 2M everywhere in this USp(2M) case. Therefore, no regular solutions
exist in the case of NF = 2M , because PfM are polynomials in z with order Mk and
thus has kM zeros. We will show a concrete example in the next Section. We expect that
each of the orientational moduli CP 1 are attached to such zeros and the deficit dimension of
Mk-singular lump

USp(2M) should be strongly related to the non-existence of regular solutions. Regular
lump solutions require the number of flavors to be greater than 2M .

In both cases of U(1) × SO(N) and U(1) × USp(2M) gauge theories, additional NG
zero modes can emerge as the moduli of vortex configurations if we choose special points as
the vacuum, Mvev(Bvev). Especially, by choosing Mvev = J (µi = 1 for all i), the following
moduli spaces for a single local vortex were found as [6]

Mvortex
G′, k=1 ⊃Mlocal vortex

G′, k=1 = C× G′

U(M)
, (9.16)

(G′ = SO(2M), USp(2M)) which cannot be moduli of single lump configurations.
To completely treat the vortex moduli, including internal moduli, we need to use the

moduli matrix formalism [136, 252]. This formalism is obtained by merely rewriting the
holomorphic gauge invariants M(z), B(z) in terms of the original chiral field Q(z) whose
components are also polynomials in the complex coordinate z.2 The description of the
lump solutions with respect to Q(z) is redundant, since Q(z) and Q′(z) determine the same
holomorphic maps M(z), B(z), if they are related by a complexified gauge transformation
Q′(z) = V (z)Q(z). Therefore we have the following equivalence relation, called the V -
equivalence

Q(z) ∼ V (z)Q(z) , V (z) ∈ U(1)C × {SO(N)C, USp(2M)C} . (9.17)

The parameters contained in Q(z) after gauge fixing, parametrize the moduli space of vor-
tices. Conversely, all moduli of vortices including internal moduli are contained in Q(z),
and thusQ(z) is denoted the moduli matrix. In this formalism the boundary conditions (9.6),
(9.11) and (9.13) are interpreted as constraints for the moduli matrix Q(z) [6]

SO(2M), USp(2M) : QT(z)JQ(z) = Mvevz
k +O(zk−1) ,

SO(2M + 1) : QT(z)JQ(z) = Mvevz
2k +O(z2k−1) . (9.18)

The constraint (9.7) is of course automatically solved in this formalism. This formalism
is apparently independent of the gauge coupling and it is well-defined to require the lump
conditions to hold on the vortex moduli space. We expect that a submanifold of the k-vortex
moduli space satisfying the lump condition is equivalent to the k-lump moduli space,

Mk-lump ' {a|a ∈Mk-vortex, the lump condition
}
. (9.19)

2 The way to derive the moduli matrix here is slightly different from the way used in Ref. [6]. These
two ways can be identified by considering BPS vortex solutions in the superfield formulation [113]. The key
observation is that the gauge symmetry G in the supersymmetric theory is complexified : GC. Hence, the
moduli matrix naturally appears in the superfield formulation, while if we fix GC in the Wess-Zumino gauge,
the scalar field Qwz appears as the usual bosonic component in the Lagrangian. The moduli matrix is usually
denoted by the symbol H0(z) in the literature.
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This expectation is quite natural and is enforced by the above observations by counting the
dimensions. Because, if we can consider a NLσM as an approximation to the gauge theory
with a strong but finite gauge coupling g, a lump solution should describe an approximate
configuration of a vortex, whereas a steep configuration with a width of order 1/g

√
ξ is

excluded by some UV cutoff Λ < g
√
ξ. Of course, to justify this expectation, we need to

verify an equivalence3 between the two formalisms, the moduli matrix formalism and the
holomorphic map (9.4) with the constraint on the invariants, under the lump condition. In
examples of the next Section, we just assume that this expectation is true. To construct lump
solutions for large NF(N), the moduli matrix formalism is somewhat easier than treating
M(z), B(z) as they are.

9.3 Lumps in U(1)×SO(2M) and U(1)×USp(2M) Kähler
quotients

9.3.1 BPS lumps in the U(1)× SO(2M) Kähler quotient
Let us start with the simplest example in which the gauge group is U(1) × SO(2) with

two flavors NF = 2. As we have studied in Sec. 8.4.1, the target space is CP 1×CP 1. Lump
solutions are classified by a pair of integers (k+, k−) given as

π2

(
MU(1)×SO(2)

NF=2

)
= Z× Z 3 (k+, k−) . (9.20)

A solution with (k+, k−) lumps is given by

Q(z) =

(
Q+

1 (z) Q+
2 (z)

Q−1 (z) Q−2 (z)

)
, (9.21)

where Q+i(z), Q−i(z) are holomorphic functions of z of degree k±, respectively. One can
verify that the tension is given by

T = 2

∫
C
∂̄∂KU(1)×SO(2) = πξ(k+ + k−) ≡ πξk , (9.22)

where KU(1)×SO(2) is the Kähler potential given in Eq. (8.61). Interestingly, the tension of
the minimal lump (k+, k−) = (1, 0), (0, 1) is half of 2πξ which is that of the minimal lump
in the usual CP 1 model. A similar observation has been obtained recently in Ref. [6].

Next, we would like to consider lump configurations in slightly more complicated mod-
els by considering general U(1) × SO(2M) Kähler quotients, where we set M ≥ 2,
NF = 2M and Mvev = J . As an example for k = 1, we take

Qk=1 =

(
z1M − A C

0 1M

)
,

{
A = diag(z1, z2, · · · , zM) ,
C = diag(c1, c2, · · · , cM) .

(9.23)

3 In the U(1)× USp and U(1)× SO cases, we have to verify that the meson field M(z) whose elements
are polynomials can be always decomposed in Q(z) whose elements are also polynomials and furthermore
that there is no degeneracy of moduli in the construction of M(z) from Q(z) under the lump condition. There
is no known proof and it is expected to be technically complicated.
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These diagonal choices allow us to treat the invariants as if they were independent invariants
of M different SO(2)’s. Hence, one can easily find an SO(2) part inside M as(

(M)i,i (M)i,i+M
(M)i+M,i (M)i+M,i+M

)
=

(
0 z − zi

z − zi 2ci

)
, i = 1, 2, · · · ,M , (9.24)

which satisfies the constraint (9.18). Note that non-zero parameters ci keep the rankM ≥
2M − 1, even at z = zi. All their eigenvalues are also eigenvalues of MM †

λi± = |z − zi|2 + 2|ci|2 ± 2|ci|
√
|z − zi|2 + |ci|2 . (9.25)

Thus, the Kähler potential in Eq. (8.43) becomes

K = ξ log

[
M∑
i=1

(√
λi+ +

√
λi−
)]

= ξ log

(
2

M∑
i=1

√
|z − zi|2 + |ci|2

)
. (9.26)

The energy density is obtained by E = 2∂∂̄K with this Kähler potential and exhibits an
interesting structure. It is proportional to the logarithm of the sum of the square root of
|Pi(z)|2, while the known Kähler potential of a CPM lump is just the logarithm of the sum
of |Pi(z)|2. This difference gives us quite distinct configurations. If we take some ci to
vanish, then we find that the energy density of the configuration becomes singular at z = zi

E = 2ξ∂∂̄ log
(√
|z − zi|2 + · · ·

)
∼ const.× 1

|z − zi| +O(z0) . (9.27)

This is due to the curvature singularity which appears when the manifold becomes of rank
M = 2M − 2, and in other words, violate the lump condition. Note that this singular
configuration has a non-vanishing size, as we mentioned above. If we take all zi’s and all
ci’s to be coincident, respectively, we find that the Kähler potential reduces to that of the
minimal winding one in the U(1) × SO(2) model. This suggests that the trace part of C
determines the overall size of the configuration and the trace part of A corresponds to the
center of mass. As we will explain later, only this trace part of A among the parameters is a
normalizable mode in the effective action of the lump.

A single lump in U(1)×SO(2M + 1) might be almost the same as the coincident k = 2
lumps in SO(2M). However we will not discuss this case in detail.

9.3.2 BPS lumps in the U(1)× USp(2M) Kähler quotient
Let us first examine a lump solution in the U(1)× USp(2) theory with NF = 2. In this

case, however, we obtain only local vortices and cannot observe regular lumps in the NLσM
since the vacuum is just a point. After fixing the gauge, the chiral field can be expressed as

Q(z) =

(
z − a 0
b 1

)
. (9.28)

This matrix yields

M = (z − a) J , K =
ξ

2
log |z − a|2 . (9.29)
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At the center of the vortex, the rank of M always reduces to zero, where the U(1) gauge
symmetry is restored. Therefore, solutions are always singular at that point, because we
know that USp(2) ' SU(2) and the U(2) model with 2 flavors admits only local vortices
rather than semi-local vortices which reduce to lumps in the NLσM limit. Indeed, the pa-
rameter b which does not appear in M is the orientational modulus of local vortex in the
original U(1)× USp(2) gauge theory and describes CP 1.

As we have mentioned, lump solutions in the case of M = MF always have singular
points in the configurations. The simplest non-trivial example for a regular lump is obtained
in the case of U(1) × USp(4) with 6 flavors. A lump (vortex) solution in this case, with
the minimal winding (k = 1) has MNF = 12 complex parameters. Let us consider the
following field configuration as a typical minimal example of k = 1;

Q(z) =


z − z+ 0 0 c a+ 0

0 z − z− −c 0 0 a−
0 0 1 0 0 0
0 0 0 1 0 0

 , (9.30)

which gives the following characteristic polynomial

det(λ−MM †) = λ2
(
λ2 − (R2

+ +R2
− + 4|c|2)λ+R2

+R
2
−
)2
, (9.31)

with R± =
√|z − z±|2 + |a±|2. Then the energy density of the configuration E is given by

E = 2∂∂̄KU(1)×USp(4)|sol = ξ∂∂̄ log
(
(R+ +R−)2 + 4|c|2) . (9.32)

This configuration is regular everywhere as long as a± 6= 0, that is, it satisfies the lump
condition. If we choose a+ = a− and z+ = z−, it corresponds to a CP 2 single lump
solution.

9.4 Effective action of lumps
Now we have a great advantage thanks to the above superfield formulation of the NLσM.

A supersymmetric low energy effective theory on the 1/2 BPS lumps is immediately ob-
tained merely by plugging the 1/2 BPS solution (9.1) into the Kähler potential which we
have obtained in the previous Section after promoting the moduli parameters ϕ to fields on
the lump world-volume

φα(t, z, z̄, x3)→ φα(z;ϕi(t, x3)) . (9.33)

The resulting (effective) expression for the Kähler potential is

Klump =

∫
dzdz̄ K

(
φ(z, ϕi(t, x3), φ†(z̄, ϕ̄i(t, x3)

)
. (9.34)

Let us make a simple example of the CP 1 σ model which is the strong coupling limit of
a U(1) gauge theory withNF = 2 flavorsQ = (Q1, Q2). In this case,Q1 andQ2 themselves
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play the role of the holomorphic invariants I i and the inhomogeneous coordinate is given by
φ = Q2/Q1. We fix the U(1)C symmetry in such a way that Q is expressed by

Q = (1, b) . (9.35)

From Eq. (1.113), the Kähler potential and the corresponding Lagrangian are of the form

K = ξ log(1 + |b|2) , L = ξ
|∂µb|2

(1 + |b|2)2
. (9.36)

A single 1/2 BPS lump solution in this model is given by

Q(z) = (z − z0, a) ↔ φ =
a

z − z0

, (9.37)

where z0 corresponds to the position of the lump and a is its transverse size and phase
moduli. To obtain the effective theory of the lump, one needs to promote the moduli matrix
as follows

Q(z) = (z − z0, a) → Q(t, z) = (z − z0(t), a(t)) . (9.38)

Plugging this into the formal expression (9.34), we get the effective theory

Leff = ξ

∫
dzdz̄ δtδ†t log

(|z − z0(t)|2 + |a(t)|2) (9.39)

= ξ

∫
dzdz̄

[ |a(t)|2
(|z − z0(t)|2 + |a(t)|2)2 |ż0(t)|2 +

|z − z0(t)|2
(|z − z0(t)|2 + |a(t)|2)2 |ȧ(t)|2

]
.

The second term in the second line does not converge, thus the size modulus a(t) is not
dynamical. Hence, we should fix it by hand as a(t) = const 6= 0. Then the only dynamical
field is the translation z0(t) and the effective action is

Leff
∞ = πξ|ż0(t)|2 , (9.40)

where 2πξ is the tension of the minimal winding solution.

9.5 Identifying non-normalizable modes
We can determine which parameters in Q(z) are localized on lumps and normalizable,

and which parameters are non-normalizable. If there exists a divergence in the Kähler po-
tential which cannot be removed by Kähler transformations, it indicates that the moduli
parameters included in the divergent terms are non-normalizable. Let us substitute an ex-
pansion of the lump solution with respect to z−1

φα(z) = φαvev +
χα

z
+O(z−2) , χα =

k∑
i=1

φαi , (9.41)
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into the Kähler potential (9.34) and expand it as well

Klump = lim
L→∞

∫
|z|≤L

[
K(φαvev, φ̄

β̄
vev) +

1

z
∂αKχ

α +
1

z̄
∂̄ᾱKχ̄

ᾱ +
1

|z|2∂α∂̄β̄Kχ
αχ̄β̄

+O(|z|−3)

]
(9.42)

= lim
L→∞

[
2πL2 K(φvev, φ̄vev) + 2π logL ∂α∂̄β̄K(φvev, φ̄vev)χαχ̄β̄ +O(1)

]
,

where L is an infrared cutoff. Thus we can conclude that the moduli parameters included in
{φαvev, χ

α} are all non-normalizable and the others are normalizable. The modulus a in the
last Section is a typical example of χα.

For instance, let us take a look at the example (9.24) of the solution for single lumps in
the U(1)× SO(2M) case. The meson field M(z) has the following elements : (z − zi) and
2ci. One can partly construct inhomogeneous coordinates of the manifold in this case by
taking ratios from pairs of the elements,

φi =
2ci

z − zM =
2ci
z

+O(z−2), for 1 ≤ i ≤M ,

φi+M =
z − zi
z − zM = 1− zi − zM

z
+O(z−2), for 1 ≤ i ≤M − 1 . (9.43)

Thus the moduli ci and zi − zM are non-normalizable. The only normalizable modulus is∑M
i=1 zi/M which is the center of mass. This fact is a result of the Kähler metric (8.44)

where the trace part of the meson field M does not contribute to the metric. Generally
speaking, all moduli of a single lump in the U(1)×SO(2M) and U(1)×USp(2M) theories
are non-normalizable except for the center of mass and the orientational moduli of local
vortex.

9.6 Discussion
In this Chapter we have studied the 1/2 BPS NLσM lumps in U(1)×G′ gauge theories

and observed that we can construct lump solutions straightforwardly if the Kähler potential
for the NLσM is given in terms of holomorphic invariants of G′. We found that counting
the dimension of these (regular) lump moduli spaces gives the same result as for the semi-
local vortex moduli space in the case of SO(N) and USp(2M) theories. This fact enforces
our natural expectation that those moduli spaces are homeomorphic to each other except in
the subspaces where the lump condition is violated. Furthermore, by considering effective
actions within our formalism for the NLσM lumps, we have obtained a conventional method
to clarify the non-normalizability of the moduli parameters in general cases. By using this,
we can conclude that in both the cases of U(1) × SO(2M) and U(1) × USp(2M) Kähler
quotients, all moduli parameters of a single regular lump are non-normalizable except for
the center of mass.

An important observation concerning lump configurations in U(1) × SO(N) and U(1)
× USp(2M) theories is the existence of a singularity in the target manifold. In those theo-
ries, a lump configuration becomes singular without taking the zero size limit, simply if the
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configuration touches the singularity of the manifold, whereas a lump in the U(N) case is
always regular with a finite size and becomes singular only in the zero size limit. Especially,
in the case of U(1) × USp(2M) with NF = 2M , only singular solutions (with a finite or
zero size) exist.

It is an important problem to determine the second homotopy group π2(MU(1)×(SO,USp))
in the case of U(1)× SO(N) and U(1)×USp(2M) theories. To support stability of lumps
in those models, we expect that

π2(MU(1)×SO(N)) ' Z× Z2 , π2(MU(1)×USp(2M)) ' Z , (9.44)

where the Z2 charge for the U(1)×SO(N) case is naturally expected, since the correspond-
ing local vortices have their charges due to π1(U(1) × SO(N)/Z2) = Z × Z2 [118]. To
determine the homotopy group in these cases is a complicated task since we have to take
non-trivial directions of cohomogeneity into account, and a further study of the moduli space
of lumps beyond counting dimensions is also needed. This problem still remains as a future
problem. The relation between our solutions and the lumps in non-supersymmetric SO(N)
QCD [228, 229] is, therefore, unclear so far. In their case, the lumps are supported by the
homotopy group π2[SU(NF)/SO(NF)] ' Z2. Therefore, these lumps are non-BPS. In our
case, the gauge coupling constants for SO(NC) and U(1) could be different although we did
not take that into account. Let g and e be the gauge couplings of the SO(NC) andU(1) gauge
groups, respectively. We have taken the strong gauge coupling limit for both the couplings,
g, e → ∞, in which case the gauge theory reduces to the NLσM of the U(1) × SO(NC)
Kähler quotient. Without taking the strong coupling limit for e, the size (width) 1/e

√
ξ for

the “Abelian” vortices becomes larger as the U(1) gauge coupling e becomes smaller. In the
limit of vanishing e, we expect that they disappear and only non-BPS Z2 lumps remain. It
is important to clarify this point which also remains as a future problem.

Besides these problems, there are many interesting future problems in the following.
Time-dependent stationary solutions, called Q-lumps [253, 254], are also BPS states in

a NLσM with a potential. Q-lumps were constructed in the CP 1 model [253, 254], the
Grassmann σ model (U(NC) Kähler quotient) [255, 256], and the asymptotically Euclidean
spaces [80, 81, 30]. It is one of the possible extensions to construct Q-lumps also in U(1)×
SO(NC) and U(1)× USp(2MC) Kähler quotients.

Finally, many extensions and applications of the present works include: dynamics of
lumps [82, 83], cosmic lump strings [88, 89, 90, 91, 92, 93, 94, 95, 96, 84, 85] and especially
their reconnection [112], composite states like triple lump-string intersections [80, 81, 30]
and lump-strings stretched between domain walls [29, 98, 99], and the Seiberg-like duality
[116].





Part IV

Soliton substructures and fractional
vortices and lumps





CHAPTER 10

Fractional vortices and lumps

We study the so-called fractional vortices, i.e. vortex configurations with the minimum
winding from the viewpoint of their topological stability, but which are characterized by
various notable substructures in the transverse energy distribution. The fractional vortices
occur in various Abelian or non-Abelian generalizations of the Higgs model. We identify
the two crucial ingredients for their occurrence – the vacuum degeneracy leading to non-
trivial vacuum moduliM, and the BPS nature of the vortices and we classify the solutions
into two kinds. The first type of such vortices appear whenM has Zn orbifold singularities;
the second type occurs in systems in which the vacuum moduli space M possesses some
deformed geometry.

10.1 Fractional characteristics and types
We will first consider taking the strong coupling limit, forcing the configuration to stay

in the vacuum manifold, M and we will have in mind generic configurations of the semi-
local type, i.e. vortex configurations with non-vanishing size moduli. These configurations
will be well-defined in the strong coupling limit, that is, they be lumps.

Even if we choose a regular base point p – vacuum of the theory, the energy distribution
in C feels the structure of the vacuum manifold M as the volume of the target space is
mapped into the transverse plane C of the semi-local vortex

E = 2

∫
C

∂2K

∂φI∂φ†J̄
∂φI ∂̄φ†J̄ = 2

∫
C
∂̄∂K . (10.1)

There are mainly two mechanisms leading to multiple peaks in the energy density.
The first is commonly at work in the presence of some orbifold singularities. Then a

regular configuration will be such that the wrapping of the target space M will wind as
many times as not to produce a singular configuration. This is in general the product of the
orbifold singularities. For instance Zm,Zn will yield the minimal regular configuration with
winding number n × m. When the map from the target space to the configuration space
winds several times to avoid the orbifold singularity, this makes the configuration similar
to a composite lump in the case of a regular target space M. The difference in this case
is that the other objects (position moduli), not having to avoid the orbifold singularity can,
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target space
(vacuum moduli)

lump configuration

deform

split

Figure 10.1: A sketch of fractional lumps of the second type in the non-linear σ model (NLσM)
limit.

in general, split and produce multiple peaks. Hence, in this case, it indeed is a minimal
configuration (under the choice of the base point – VEV), but producing a fractional lump
(which becomes a vortex in the finite gauge coupling limit).

The other mechanism at work is somewhat intuitively understood by the fact that the
metric appears in formula for the energy density. It is indeed the pull-back of the area form
on the target space. We conjecture that in general there will be a correspondence between
a positive scalar curvature in the target space M and a peak in the energy density. This
can produce multiple peaks in the presence of multiple areas of (sufficiently large) scalar
curvature on M. When the field configuration sweeps such regions, the energy density
will show sub-peaks as illustrated in Fig. 10.11. Now we can also understand somewhat
intuitively, what happens in the case that there appears a Coulomb singularity on the target
spaceM. However, we need to be cautious now. The strong coupling limit, corresponding
to integrating out gauge degree of freedom, is no longer a valid approximation and we should
really go back to the full dynamical system. Thus we need to turn on a finite gauge coupling
and by continuity, we can understand how, in this case, a fractional vortex has come to life.
In turn, we can think of going arbitrarily close to the singularity, for example by turning on
a small FI parameter etc. We can now think in terms of the non-linear σ model (NLσM)
limit and the mapping produces a regular peak at that point. Of course fractionality in this
second type requires a minimum number of active curvatures/singularities to be two.

10.2 The droplet model

We will start by considering the most minimalistic case, namely a U(1) model with
NF = 2 flavors and (unequal) charges

1The existence of the directions in the target space, which are not related to any isometry, is necessary for
the fractional lumps of the second type. Such directions are parametrized by so-called quasi-Nambu-Goldstone
modes in the context of supersymmetric theories [160, 257] while the directions of isometries correspond to
Nambu-Goldstone modes.
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U(1)

A 2
B 1

H =

(
A
B

)
. (10.2)

The Lagrangian of this model reads

L = − 1

4e2
FµνF

µν + (DµH)†DµH − e2

4

∣∣Tr
(
HH†c

)− ξ∣∣2 , (10.3)

where ξ > 0 is an FI-parameter with the covariant derivative

DµH =

(
∂µ12 +

i√
2
Aµc

)
H , (10.4)

with the charges c = diag(cA, cB) = diag(2, 1). Notice the non-standard transposed nota-
tion. The gauge transformations take the form,

(A,B)T → (ei2α(x)A, eiα(x)B)T . (10.5)

The vacuum manifold M (D-flatness condition) is topologically equivalent to S3 and the
vacuum moduli M are topologically the same as CP 1 but with a conical singularity (see
Fig. 10.2)

M = {A,B | 2|A|2 + |B|2 = ξ} , (10.6)
M = M/U(1) ' WCP 1

(2,1) ' CP 1/Z2 . (10.7)

The vacuum moduli can be also described by the following quotient

ϕvev ≪ 1

ϕ =∞
B = 0

ϕ = 0

A = 0

v1 ≫ v2
2

ϕvev ≫ 1

v1 ≪ v2
2

Figure 10.2: A sketch of the CP 1/Z2 which is a sphere with a conical singularity at a (i.e., north)
pole.
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(A,B)T ∼ (λ2A, λB)T , λ ∈ C∗ . (10.8)

Clearly, B = 0 is a Z2 fixed point. The U(1) gauge symmetry is broken at every point of
the vacuum moduli, thus topologically stable vortices can appear.

The Bogomol’nyi completion can be made as follows

T =

∫
C

{
1

2e2

∣∣∣∣F12 − e2

√
2

(
Tr
(
HH†c

)− ξ)∣∣∣∣2 + 4|D̄H|2 − ξ√
2
F12 − iεij∂i

(
H†DjH

)}
,

(10.9)

which determines the BPS-equations and the tension

D̄H = 0 , F12 =
e2

√
2

(
Tr
(
HH†c

)− ξ) , T = − ξ√
2

∫
C
F12 > 0 . (10.10)

We solve the first BPS equation in (10.10) by the Ansatz H = s−1(z, z̄)H0(z), where

H0(z) =

(
A0(z)
B0(z)

)
, (10.11)

is holomorphic and called the moduli matrix. The field s is determined as

1√
2
Āc = −i∂̄ log s , s = diag(ηcA , ηcB) = diag(η2, η1) . (10.12)

The second BPS equation in (10.10) leads to the master equation

∂̄∂ log |η|2 = −e
2

4

[|η|−2
(
2|η|−2|A0|2 + |B0|2

)− ξ] , (10.13)

where the energy density and tension of the vortex read

E = 2ξ∂̄∂ log |η|2 + ∂2
i J , J ≡ 1

2
|η|−2

(|η|−2|A0|2 + |B0|2
)
, (10.14)

T =

∫
C
E = 2πξν . (10.15)

We choose the boundary condition

(A,B)T → (Aveve
i2νθ, Bveve

iνθ)T ∈M as |z| → ∞ . (10.16)

We can obtain an analytic solution to the master equation (10.13) in the strong gauge cou-
pling limit e→∞

|η|2 =
|B0|2

2ξ
f(ϕ, ϕ̄) , f(ϕ, ϕ̄) ≡ 1 +

√
1 + 2|ϕ|2 , ϕ ≡ 2

√
ξ
A0

B2
0

, (10.17)

corresponding to a lump solution in the NLσM, whereas the holomorphic field ϕ(z) will
turn out to be the inhomogeneous coordinate on the target space of this NLσM.
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We consider the minimal-energy vortex configuration (k = 1). When we choose a
generic point (Bvev 6= 0) as the boundary condition, the minimal configuration has U(1)
winding ν = 1 whose energy is

Tk=1 = 2πξ , (ν = 1) . (10.18)

The corresponding moduli matrix is given by

A0(z) = Avevz
2 + a1z + a2 , B0(z) = Bvevz + b1 , {a1, a2, b1} ∈ C3 , (10.19)

with 2|Avev|2 + |Bvev|2 = ξ. Although this is the minimal-energy configuration, we have
three complex moduli parameters a1, a2, b1. Remember that A (B) is zero at a point where
A0 (B0) is zero. Note that A0 has two zeros and B0 has one zero because A winds twice
and B winds once when we go around the boundary, S1 at spatial infinity. An important
observation is that the U(1) gauge symmetry is not generally recovered at the zeros; only in
the special case where A0 and B0 vanish simultaneously.

Consider now the vortex at the special point of the vacuum moduli, Bvev = 0. The
minimal configuration k = 1 corresponds to ν = 1/2 and has a tension

T special
k=1 = πξ , (ν = 1/2) . (10.20)

The moduli matrix now takes the form (k = 1)

A0 = Avevz + a , B0 = b , Avev =
√
ξ/2 , (10.21)

where a, b are the moduli parameters. Comparing this with Eq. (10.19) with Bvev = 0, one
immediately sees that the latter is not a minimal-energy solution.

The vortex (energy, and magnetic flux) profiles can be approximately determined in the
strong-coupling limit. The gauge theory reduces to the NLσM whose target space is the
vacuum moduli M in Eq. (10.7). The Kähler potential is given, in the supersymmetric
version of our model, by

K = |A|2e−2V + |B|2e−V + ξV . (10.22)

Integrating out the U(1) vector multiplet V , we obtain the following Kähler quotient in
terms of an inhomogeneous coordinate ϕ(z) which was already found in Eq. (10.17) in the
strong gauge coupling limit

K = ξ log f(ϕ, ϕ̄) + ξf−1(ϕ, ϕ̄) , f(ϕ, ϕ̄) ≡ 1 +
√

1 + 2|ϕ|2 . (10.23)

Note that the first term is due to the magnetic flux F12 and the second term corresponds to the
surface term ∂2

i J in Eq. (10.15). All the regular BPS lump solutions are given analytically
by Eq. (10.17). Only the solutions which have points where A and B simultaneously vanish
cannot be seen in this limit, because the U(1) gauge symmetry would remain unbroken
there. Such solutions contain small lump singularities and we should go back to the original
gauge theory in order to observe the configurations correctly.
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The metric on this manifold is

gϕϕ̄ = ξ
2|ϕ|2 + f(ϕ, ϕ̄)

f 3(ϕ, ϕ̄)(1 + 2|ϕ|2)
, (10.24)

which is seen not to be singular at any finite value of the inhomogeneous coordinate ϕ(z).
The scalar curvature reads

R =
4 [2|ϕ|2 + (2 + |ϕ|2) f(ϕ, ϕ̄)]

ξ (1 + 2|ϕ|2)
3
2

. (10.25)

The space is topologically equivalent to CP 1, but there is a Z2 singularity, which we have
mentioned already, and to see this we calculate the Kähler quotient and metric in terms of
the inverse inhomogeneous coordinate ϕ̃(z) ≡ ϕ−1(z)

K =
ξ

2
h(ϕ̃, ¯̃ϕ)− ξ log h(ϕ̃, ¯̃ϕ) , h(ϕ̃, ¯̃ϕ) ≡

√
|ϕ̃|2 (2 + |ϕ̃|2)− |ϕ̃|2 , (10.26)

The metric in terms of this coordinate reads

gϕ̃ ¯̃ϕ =
1− h(ϕ̃, ¯̃ϕ)√|ϕ̃|2 (2 + |ϕ̃|2)

, (10.27)

where h(|ϕ̃|2) → 0 for ϕ̃ → 0, however the “1” in the numerator gives rise to a conical
singularity. That is, the manifold is a WCP 1

2,1 ' CP 1/Z2. The scalar curvature in these
coordinates reads

R = − 4 [h(ϕ̃, ¯̃ϕ) + |ϕ|2 + 2]

ξ (2 + |ϕ|2)2 (h(ϕ̃, ¯̃ϕ)− 1)
. (10.28)

A numerical result is shown in Fig. 10.3. As we move in the vacuum moduli spaceM
by varying the VEVs Avev, Bvev (or ϕvev ≡ 2

√
ξAvev/B

2
vev) and changing the vortex moduli

parameters the tension density profile shows varying substructures. Since the zeros of the
fields do not imply necessarily the restoration of a U(1) gauge symmetry, the positions
of the peaks do not in general coincide with the zeros of the fields A,B. Although it is
very complicated to specify the positions of peaks analytically, it is easy to visualize it
numerically. In Fig. 10.3, we have shown the zeros of A,B and the peaks. We observe that
there are no direct relations between the zeros of fields and the positions of the peaks, except
at the two poles, Avev = 0 (south pole) and Bvev = 0 (north pole), of the spaceM.

An axially symmetric peak appears at the zero zN of B0(z) in the limit Avev → 0; as
Avev departs from 0, it decomposes into two sub-peaks. We cannot remove one of the two
sub-peaks by pushing its position to infinity. This feature can easily be observed for large
|ϕvev| ≡ |2ξAvev/B

2
vev| � 1 where the positions of the two peaks can naturally be approxi-

mated by the zeros z = zS
i (i = 1, 2) of A0(z). (Here Avev(zS

1 + zS
2 ) = −a1, Avevz

S
1z

S
2 = a2,

Bvevz
N = −b1). The energy density

E = 2∂∂̄K = 2gϕϕ̄∂ϕ∂̄ϕ̄ , (10.29)
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(jAvevj2; jBvevj2) = (0; 1)
(jAvevj2; jBvevj2) = (1=8; 3=4)
(jAvevj2; jBvevj2) = (1=4; 1=2)

(jAvevj2; jBvevj2) = (3=8; 1=4)
(jAvevj2; jBvevj2) = (1=2; 1=10000)
(jAvevj2; jBvevj2) = (1=2; 0)

Figure 10.3: The energy (the left-most and the 2nd left panels) and the magnetic flux (the 2nd right
panels) density are shown, together with the boundary values (A,B) (the right-most panels) for the
minimal lump of the first type in the strong gauge coupling limit. The moduli parameters are fixed
as a1 = 0, a2 = 1, b1 = −1 in Eq. (10.19). The red dots are zeros of A and the black one is the zero
of B. ξ = 1. The last figures illustrate the minimum lump defined at exactly the orbifold point (see
Eq. (10.21)) with Avev = 1/

√
2, and with b = 0.8.
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can with the following form of the inhomogeneous coordinate

ϕ = ϕvev
(z − zS

1 )(z − zS
2 )

(z − zN)2
, ϕvev ≡ 2

√
ξ
Avev

B2
vev

, (10.30)

be written at the points of the sub-peaks as

E|z=zSi =
1

2
ξ|ϕvev|2 |z

S
1 − zS

2 |2
|zS
i − zN|4 . (10.31)

For instance, if the three zeros get separated by large distances, then we see that the sub-
peaks are diluted. If, instead, only one of the zeros, z = zS

2 is pushed toward infinity, that
is |zS

2 − zN|, |zS
1 − zS

2 | � |zS
1 − zN|, the peak at z = zS

1 becomes singular. In either case, a
single isolated peak is not allowed as a vortex (lump) solution. This solution consisting of
two sub-peaks is one of the typical examples of fractional vortices. Only when Bvev = 0,
they become independent. Such a limiting configuration is no longer a minimal energy
configuration, however. The minimal configuration at exactly Bvev = 0 (with (10.21)) has
only one peak. Its tension is half of the minimal configuration for Bvev 6= 0.

The reason why the minimum vortex at Bvev 6= 0 must have twice the energy with
respect to the minimal object at Bvev = 0 is as follows. Our vacuum manifold has a Z2

singularity at |Bvev| = 0. If the vacuum is chosen at Bvev 6= 0 the solution touches the
singularity at a finite point in the z-plane and would get singular there. To remove such a
singularity, the solution must wrap twice around the vacuum moduli. On the other hand, if
one sits exactly at the Z2 point of the manifold the solution does not touch the singularity
within a finite distance and a regular solution can be constructed with just a single winding.

A comment in store is about the “volume” of the sub-peaks. Roughly speaking, in
this simple model, the energy contribution being mapped to the peaks corresponding to
the moduli zS

i , i = 1, 2 comes from the pull-back of the area form from the value of the
VEV, namely ϕvev, over the south-pole and back. Similarly the contribution for the peak
corresponding to the moduli zN comes from the integral over the north-pole.

Now we consider directly the NLσM and write the three minimal configurations as fol-
lows

ϕ[11](z) = ϕvev
(z − zS

1 )(z − zS
2 )

(z − zN)2
, ϕ[01](z) =

z − zS
1

(z − zN)2
, ϕ[10](z) = z − zS

1 . (10.32)

The first solution ϕ[11] has a generic VEV, while ϕ[01] and ϕ[10] will go to 0 and ∞ for
|z| → ∞, respectively. It is evident that there are more possibilities in the NLσM only.
However, if we want to make sense to the model in terms of the gauge theory at finite
gauge coupling, it is easy to see that all poles have to have a multiplicity of an even number.
Considering splitting the pole into two poles of multiplicity one

ϕ(z) = ϕvev
(z − zS

1 )(z − zS
2 )

(z − zN
1 )(z − zN

2 )
, (10.33)

we can no longer turn on a finite gauge interaction in this model.
The characteristics of the vortex-energy profile are deeply rooted in the property of the

vacuum manifoldM itself and to its singularity structure. In a mathematical language, the
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wrapping of target space of the NLσM in this simple example makes a discontinuous jump
at ϕvev =∞ (Bvev = 0)

π2 (M, ϕvev)

π2 (M,∞)
= Z2 ,

π1 (F, f)

π1 (F, f0)
= Z2 , ϕvev 6=∞ , (10.34)

where the fiber is the U(1) fibration in the semi-local vortex system. The S1 fiber itself
reduces to the half at the orbifold singularity

f = π−1(ϕvev) = S1 , f0 = π−1(∞) = S1/Z2 . (10.35)

This is the global reason for the two sub-peaks observed in Fig. 10.3.
The argument here can be easily extended to more general cases with the multiple flavors

H = (A,B,C,D, · · · ) with generic U(1) charges Q = (m,n, o, q, · · · ), which are all rela-
tively prime. The moduli manifold is thenM = CPNF−1

(m,n,··· ) ' CPNF−1/(Zm × Zn × · · · ).
Near a Zm singular point, (|Avev|, |Bvev|, |Cvev|, · · · ) = (

√
ξ/m, 0, 0, · · · , )m peaks appear

in the energy distribution.

10.2.1 Generalizations
We will now consider a generalization of the model studied in the last Section. We still

restrict ourselves to NF = 2 flavors H = (A,B)T but with unequal charges assigned as
({m,n}) to the fields A and B, respectively. Let us assume that m,n are relatively prime.

The vortex solution is characterized by the broken U(1)-winding number ν given in
Eq. (10.15). Analogously to the previous case, we can write the solutions in terms of the
moduli matrix

H = (A,B)T =
(
η−mA0(z) , η−nB0(z)

)T
, (10.36)

where ν is a positive number, η is an everywhere non-zero function and the moduli matrices
A0(z) and B0(z) are polynomial functions of z. The asymptotic behavior of η is still

|η|2 → |z|2ν as |z| → ∞ , (10.37)

while the boundary condition now reads

(A,B)T → (Aveve
imνθ, Bveve

inνθ)T ∈M as |z| → ∞ . (10.38)

The BPS equations lead to the master equation

∂̄∂ logω = −e
2

4

[
mω−m|A0|2 + nω−n|B0|2 − ξ

]
, (10.39)

where ω ≡ ηη†.
If we fix A ≡ 0 (B ≡ 0) everywhere, we can think of the system as just the Abelian-

Higgs model with one complex scalar field B (A) whose U(1) charge is n (m). The vortices
there are the normal ANO solutions, though the k-vortex solutions will have the U(1)-
winding number k/n (k/m) with tension TB = 2πξk/n (TA = 2πξk/m). Indeed, when
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only one field is active while the other is inert, the U(1) gauge coupling constant and the
FI term can be rescaled such that the system looks exactly as the standard Abelian-Higgs
model with unit U(1) charge. What we are trying to study in this Section is an intermediate
situation between two kinds of vortices where both fields contribute non-trivially. Such in-
termediate states should have the energy T ≡ mTA = nTB, and we shall see configurations
which have m peaks in one limit and n peaks in another limit.

First we choose a generic point such as Avev 6= 0 and Bvev 6= 0. The moduli matrices
behave asymptotically as follows

A0(z) = ηmA→ |z|mνeimνθAvev ,

B0(z) = ηnB → |z|nνeinνθBvev , as |z| → ∞ . (10.40)

Holomorphy of A0, B0 requires mν ∈ Z+ and nν ∈ Z+. As we have chosen m and n to
be relatively prime, this is satisfied by ν ≡ k ∈ Z+. Thus we have obtained the non-trivial
condition for A0, B0

ν = k : A0(z) = Avevz
mk +O(zmk−1) , B0(z) = Bvevz

nk +O(znk−1) . (10.41)

Note that k vortices have (m+ n)k moduli parameters with the boundary vacuum modulus.
They may correspond to positions and sizes of the fractional vortices.

When we choose the special point Avev = 0 (Zm fixed point) or Bvev = 0 (Zn fixed
point) as a boundary condition, the conditions for the moduli matrix drastically change. For
instance for |Avev| =

√
ξ/m and Bvev = 0, we immediately obtain ν = k/m and the

conditions

ν =
k

m
: A0 =

√
ξ

m
zk +O(zk−1) , B0 = bzβ +O(zβ−1) , (10.42)

where β is a semi-positive definite integer less than nν = n
m
k. If we set B0 = 0, the

solution is identical to the ANO vortex as we mentioned before. When B0 is not zero, the
solutions significantly differ from the ANO solution and also from the semi-local vortices in
the extended Abelian-Higgs model. Similarly, if we choose |Bvev| =

√
ξ/n and Avev = 0,

the U(1) winding number becomes ν = k/n and the conditions change as

ν =
k

n
: A0 = azα +O(zα−1) , B0 =

√
ξ

n
zk +O(zk−1) , (10.43)

where α is a semi-positive definite integer less than mν = m
n
k. Note that the U(1) charge ν

is fractionally quantized at the conical singularities. The present model thus nicely illustrates
the first mechanism for the fractional vortices discussed in Sec. 10.1.

10.2.2 Cousins
Let us make some comments about the many models that were found and studied in

the early days of the fractional vortices. It was found that several models with different
matter content had exactly the target space of the droplet model (10.7). Naturally, with the
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arguments of the last Sections, also these models provide fractionality. Instead of describing
them in detail here, let us just demonstrate their similarity by their Kähler quotients. For
more details the reader can delve into the paper [2].

The first example is the model with the following fields and charges

U1(1) U2(1)

A 2 0
B 1 1
C 1 −1

The Kähler potential of this model is given by

K = |A|2e−2V1 + |B|2e−V1e−V2 + |C|2e−V1eV2 + ξV1 , (10.44)

where the Kähler quotient is given by Eq. (10.23) with the inhomogeneous coordinate

ϕ =
√
ξ

A0(z)

B0(z)C0(z)
. (10.45)

In this case the number of moduli is only two.
The next example is the model summarized by

U(1) SU(2)

A 2 1

H 1 �

which has the Kähler potential

K = Tr
[
HH†e−V

′
e−Ve

]
+ |A|2e−2Ve + ξVe . (10.46)

The Kähler quotient is again given by Eq. (10.23) but now with the inhomogeneous coordi-
nate

ϕ =
√
ξ
A0(z)

detH0(z)
. (10.47)

In this case the number of moduli is only three. The moduli space in this case reads

M = C× C× CP 1 . (10.48)

10.3 The sweet potato / lemon space
The model of Sec. 10.2 was chosen to have fewest possible fields. However, the Kähler

metric turned out to be rather elaborate. A simplification is easily made by choosing equal
U(1) charges (up to a sign) for every U(1) gauge group. The simplest example in this genre
is summarized by
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U1(1) U2(1)

A 1 0
B 1 1
C 1 −1

The field content transforms under the gauge symmetry as

(A,B,C)T → (
eiα(x)A, eiα(x)+iβ(x)B, eiα(x)−iβ(x)C

)T
. (10.49)

An important difference from the model described briefly in Sec. 10.2.2 is that the gauge
symmetry is now U(1)1 × U(1)2, without a Z2 division. The points (A, B , C) and (−A,
B, C) related by (α, β) = (π,±π) ∈ Z2, are distinct points. The vacuum manifold and
vacuum moduli space are given by

M =
{
A,B,C | |A|2 + |B|2 + |C|2 = ξ1, |B|2 − |C|2 = ξ2

}
, (10.50)

M = M/ (U(1)1 × U(1)2) . (10.51)

We see that A = 0 is a Z2 orbifold point, whereas the point B = C = 0 represents a system
in Coulomb phase (which can be Higgsed and regularized by ξ2 6= 0). See Fig. 10.4. Clearly
this model shares aspects both of the simple U(1) model of Sec. 10.2 and of the U(1)×U(1)
model described in Sec. 10.2.2. In the following we shall consider mainly the case of ξ2 = 0,
except when we consider the NLσM limit, which is well defined only for a non-vanishing
ξ2.

�2 = 0 �2 6= 0

Singularity (Coulomb phase)

Z2 singularity Z2 singularity
Figure 10.4: The sweet potato / lemon space.

The vortex Ansatz is

(A,B,C)T =
(
s−1

1 A0(z), s−1
1 s−1

2 B0(z), s−1
1 s2C0(z)

)T
, (10.52)

with the master equations

∂̄∂ logω1 = −e
2

4

[
ω−1

1

(|A0|2 + ω−1
2 |B0|2 + ω2|C0|2

)− ξ1

]
, (10.53)

∂̄∂ logω2 = −g
2

4

[
ω−1

1

(
ω−1

2 |B0|2 − ω2|C0|2
)− ξ2

]
, (10.54)
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where ωi ≡ sis
†
i , for i = 1, 2. The equations work out analogously as demonstrated in the

previous Sections and we will not repeat them here. The winding numbers are ν1 and ν2 for
U(1)1 and U(1)2, respectively. The tension depends only on ν1 for ξ2 = 0

T = 2πξ1ν1 , ν1 ∈ Z+ . (10.55)

The minimal-energy solutions with the generic boundary condition (0 < |Avev|2 < ξ1) have
T = 2πξ1 and are obtained by the following three different moduli matricesA0

B0

C0

 =

 Avevz + a
Bvev

Cvevz
2 + c1z + c2

 , (ν1, ν2) = (1,−1) , (10.56)

A0

B0

C0

 =

Avevz + a
Bvevz + b
Cvevz + c

 , (ν1, ν2) = (1, 0) , (10.57)

A0

B0

C0

 =

 Avevz + a
Bvevz

2 + b1z + b2

Cvev

 , (ν1, ν2) = (1, 1) . (10.58)

As they obey different boundary conditions for ν2, they belong to different topological sec-
tors. Each configuration has three moduli parameters.

Near the Z2 orbifold point we observe two peaks. Although the energy density always
looks the same, the magnetic fluxes, especially of the second U(1)2, depends on the value
of ν2. In Fig. 10.5, we show several numerical solutions for Eq. (10.58). We also show
a couple of solutions for Eq. (10.57) in Fig. 10.6. In almost all regions, the configuration
consists of one peak or two peaks but sometimes we observe three peaks simultaneously.

On the other hand, at exactly the singular vacuum Avev = 0 (the singular point onM),
the minimal vortex with tension T = πξ1 is given byA0

B0

C0

 =

 a
Bvevz + b
Cvev

 , (ν1, ν2) = (1/2, 1/2) , (10.59)

A0

B0

C0

 =

 a
Bvev

Cvevz + c

 , (ν1, ν2) = (1/2,−1/2) . (10.60)

At A = 0 (ϕ = 0) a Z2 symmetry remains unbroken which is a typical orbifold singularity.
As a result, the U(1)1 fiber F is the half (α = 0 → π) at the orbifold point as compared
to that in other points of the vacuum moduli, where α = 0 → 2π. The global structure
of the vortex-sigma model lumps in this model is thus somewhat similar to the model of
Sec. 10.2. At the Z2 orbifold singularity π1(F ) and π2(M) make a jump, and this explains
the appearance of the two sub-peaks.

As in the model in Sec. 10.2.2, we cannot take Bvev = Cvev = 0 as a boundary condition
since the second U(1)2 is unbroken at infinity.

These aspects can be made more explicit in the strong gauge coupling limit e1, e2 →∞,
where the Kähler potential is simpler (than in the model of Sec. 10.2.2) by construction.
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Singularity (Coulomb phase)

Z2 singularity

(jAvevj2; Bvevj2; jCvevj2) = (0:9; 0:05; 0:05)

Singularity (Coulomb phase)

Z2 singularity

(jAvevj2; Bvevj2; jCvevj2) = (0:7; 0:15; 0:15)

Singularity (Coulomb phase)

Z2 singularity
(jAvevj2; Bvevj2; jCvevj2) = (0:4; 0:3; 0:3)

Singularity (Coulomb phase)

Z2 singularity(jAvevj2; Bvevj2; jCvevj2) = (0:2; 0:4; 0:4)
Singularity (Coulomb phase)

Z2 singularity(jAvevj2; Bvevj2; jCvevj2) = (0:01; 0:495; 0:495)
Figure 10.5: The energy density (left-most) and the magnetic flux density F (1)

12 (2nd from the left),
F

(2)
12 (2nd from the right) are shown together with the boundary condition (right-most) for Eq. (10.58)

with ξ1 = 1 and ξ2 = 0 and e1 = 1, e2 = 2.
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Singularity (Coulomb phase)

Z2 singularity

(jAvevj2; Bvevj2; jCvevj2) = (0:9; 0:05; 0:05)

Singularity (Coulomb phase)

Z2 singularity

(jAvevj2; Bvevj2; jCvevj2) = (0:7; 0:15; 0:15)

Singularity (Coulomb phase)

Z2 singularity
(jAvevj2; Bvevj2; jCvevj2) = (0:4; 0:3; 0:3)

Singularity (Coulomb phase)

Z2 singularity(jAvevj2; Bvevj2; jCvevj2) = (0:01; 0:495; 0:495)
Figure 10.6: The energy density (left-most) and the magnetic flux density F (1)

12 (2nd from the left),
F

(2)
12 (2nd from the right) are shown together with the boundary condition (right-most) for Eq. (10.57)

with ξ1 = 1 and ξ2 = 0 and e1 = 1, e2 = 2.

Since the Coulomb phase leads to singular solutions, we here turn on the another FI pa-
rameter ξ2 (|ξ2| < ξ1) for U(1)2. Working in a supersymmetric context, integrating out the
gauge superfields V1 and V2 from

K = |A|2e−V1 + |B|2e−V1−V2 + |C|2e−V1+V2 + ξ1V1 + ξ2V2 , (10.61)

yields the Kähler quotient

K = ξ1 log
(

1 +
√
λ2 + (1− λ2)|ϕ̃|2

)
− |ξ2| log

(
|λ|+

√
λ2 + (1− λ2)|ϕ̃|2

)
. (10.62)

where λ ≡ ξ2
ξ1

and ϕ̃ is the inhomogeneous coordinate which describes the BPS solutions in
terms of the holomorphic function

ϕ̃(z) =
2B0(z)C0(z)

A2
0(z)

, (10.63)
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and the solutions are characterized by the quantized tension

T = 2π
∑
i

ξiνi , νi ≡ 1

π

∫
C
∂̄∂ log |si|2 , (10.64)

where |si|2 can be solved analytically and are given by

|s1|2 =
|A0|2

1− λ2

(
1 +

√
λ2 + (1− λ2)|ϕ̃|2

)
, (10.65)

|s2|2 =
|A0|2
|C0|2

−λ+
√
λ2 + (1− λ2)|ϕ̃|2
2(1 + λ)

=
|B0|2
|A0|2

2(1− λ)

λ+
√
λ2 + (1− λ2)|ϕ̃|2 . (10.66)

10.3.1 Another cousin
As in the case of the model discussed in Sec. 10.2, there has also been found a cousin

of this model with the sweet potato / lemon space as a target space of the NLσM, however
with ξ2 = 0. Again more details about this model can be found in the paper [2]. The model
is summarized by the following matter and charge assignments

U(1) SU(2)

A 1 1

B 1 �

The Kähler potential is

K = Tr
[
HH†e−V

′
e−Ve

]
+ |A|2e−Ve + ξVe , (10.67)

which has the Kähler quotient (10.62) with λ = ξ2 = 0, i.e.

K = ξ1 log
(

1 +
√
|ϕ̃|2

)
, (10.68)

and the inhomogeneous coordinate given by

ϕ(z) = 2
√
ξ1

detH0

A0

. (10.69)

In this case the moduli space is

M = C× C× CP 1 . (10.70)

10.4 U(1)× SO(N) model
We now consider the fractional vortices occurring in a model with gauge group U(1)×

SO(N). This was the first fractional vortex (lump) that was discovered [5].
For our purposes here, we shall consider only the even-dimensional orthogonal groups,

i.e. N = 2M . The matter content is NF = N flavors of squarks in the fundamental rep-
resentation of the SO(N) group, all with the same unit charge with respect to the U(1)
group:
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U(1) SO(N)

H 1 �

This theory has been studied in depth in this thesis in various Chapters, both with respect to
the vacua, the vortices and the corresponding lumps. Hence we will not repeat any unnec-
essary equations here.

In order to study the minimal winding vortex configuration concretely, we will consider
the following moduli matrix

H0 =

(
z1M − Z C

0 1M

)
, Z = diag(z1, z2, . . . , zM) , C = diag(c1, c2, . . . , cM) ,

(10.71)

and first restrict ourselves to the standard color-flavor locked vacuum (1.40). However, the
vacuum is generically given by Eq. (8.4). To solve the master Eqs. (1.58) and (1.59), we set

Ω′ = diag
(
eχ
′
1 , . . . , eχ

′
M , e−χ

′
1 , . . . , e−χ

′
M

)
, (10.72)

where the determinant one is manifest. Taking ω = eψ, we obtain

∂̄∂ψ = − e2

8M

[
M∑
i=1

{(|z − zi|2 + |ci|2
)
e−(ψ+χ′i) + e−(ψ−χ′i)

}
− ξ
]
, (10.73)

∂̄∂χ′i = −g
2

8

[(|z − zi|2 + |ci|2
)
e−(ψ+χ′i) − e−(ψ−χ′i)

]
, ∀ i ∈ [1,M ] . (10.74)

If we now take the infinite gauge coupling limit e → ∞, g → ∞, we obtain the following
lump solution

eχ
′
i =

√
|z − zi|2 + |ci|2 , (10.75)

eψ =
2

ξ

M∑
i=1

eχ
′
i =

2

ξ

M∑
i=1

√
|z − zi|2 + |ci|2 , (10.76)

which has the energy density

E = 2ξ∂̄∂ log

{
M∑
i=1

√
|z − zi|2 + |ci|2

}
. (10.77)

This is the fractional lump solution found in Ref. [5].
The vortex energy profile in the strong-coupling approximation for the U(1) × SO(6)

model is shown in Fig. 10.7. Three fractional peaks are clearly seen. The positions of
the peaks can be understood as follows. If ci = 0 one of the Û(1) ⊂ U(1) × SO(2M),
constructed as the diagonal combination of U(1) and one of the U(1) Cartan subalgebra
of SO(2M), is restored at the points z = zi (i = 1, 2, . . .M ). If ci 6= 0 the situation
around a fractional peak at z = zi is similar to the power-behaved semi-local vortex of the
extended Abelian-Higgs model. The number of peaks reflects obviously the rank of the



184 Fractional vortices and lumps

Figure 10.7: The energy density of three fractional vortices (lumps) in the U(1)× SO(6) model in
the strong coupling approximation. The positions are z1 = −√2 + i

√
2, z2 = −√2− i√2, z3 = 2.

Left panel: the size parameters are chosen as c1 = c2 = c3 = 1/2. Right panel: the size parameters
are chosen as c1 = 0, c2 = 0.1, c3 = 0.3. Notice that one peak is singular (z1) and the other two are
regularized by the finite (non-zero) parameters c2,3.

group considered (here rank{SO(6)} = 3), but the number of the possible fractional peaks
depends on the point of the vacuum moduli (a particular VEV) considered. For instance, if
two of vi are taken to be zero, the maximum number of the fractional peaks would be two,
and so on.

In the supersymmetric version of the models based on the U(1)×SO(N) gauge groups,
the Kähler potential in terms of a meson M has been determined in Ref. [5],

K = ξ log Tr
√
MM † . (10.78)

If we relax the vacuum moduli to be equal (1.40), thus having the possibility of distinct
{ai}’s in Eq. (8.4), it will prove convenient to work directly with the mesons of SO(2M)

M =

(
eu(z − α) ±iα
±iα e−u(z + α)

)
, (10.79)

with α, u ∈ R. The meson VEV will be diag(a2
1, a

2
2) = diag(eu, e−u). Using the Kähler

potential (10.78) we readily obtain the energy density

E = ξ∂̄∂ log

(
|z − α tanh(u)|2 +

α2

cosh2(u)

)
. (10.80)

Furthermore, we can construct a typical example of fractional vortices, in a U(1)×SO(2N)
model in the lump limit as follows

E = 2ξ∂̄∂ log

(
N∑
i=1

mi

√
|z − αi tanh(ui)|2 +

α2
i

cosh2(ui)

)
, (10.81)
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with a2
2i−1 = mi e

ui , a2
2i = mi e

−ui . For each SO(2) subgroup, we have in this construction
a possibility for an amplification mi, while αi, ui serve as a position- and an effective size-
parameters. One can observe that mi controls the relative weight of the energy distributed
to the i-th fractional vortex.

10.5 Discussion
In this Chapter we have given a simple account of the fractional vortices which have

minimally quantized magnetic flux (winding) but with non-trivial substructures in the energy
distribution in the transverse plane. The common characteristic features these models share
are a non-trivial vacuum degeneracy and the BPS saturated nature of the vortex solutions.
We have generalized the moduli matrix formalism [29, 100, 136] to clarify all possible
moduli parameters of the minimally quantized fractional vortices.

We have classified fractional vortices into two types; the first type appears whenM has
a Zn singularity where the gauge symmetry is not restored while the second type occurs
whenM has a 2-cycle with a deformed geometry. Indeed, we have observed that smooth
fractional lump solutions become singular as the smooth manifold M is deformed into a
singular manifold (e.g. when some FI parameters are turned off). Even whenM has such
singularities, we have found smooth fractional vortex solutions. The vortices share the same
properties as those of the corresponding lumps wrapping onM smoothened.





Part V

Non-Abelian Chern-Simons vortices





CHAPTER 11

Non-Abelian Chern-Simons vortices with
generic gauge groups

We study non-Abelian Chern-Simons BPS-saturated vortices enjoying N = 2 super-
symmetry in d = 2 + 1 dimensions, with generic gauge groups of the form U(1) × G′,
with G′ being a simple group, allowing for orientational modes in the solutions. We will
keep the group as general as possible and utilizing the powerful moduli matrix formalism to
provide the moduli spaces of vortices and derive the corresponding master equations. Fur-
thermore, we study numerically the vortices applying a radial Ansatz to solve the obtained
master equations and we find especially a splitting of the magnetic fields, when the coupling
constants for the trace-part and the traceless part of the Chern-Simons term are varied, such
that the Abelian magnetic field density can become negative near the origin of the vortex
while the non-Abelian part stays positive, and vice versa.

11.1 The model
Let us start by taking the model of Sec. 1.5.3 and then take the strong gauge coupling

limit e→∞, g →∞, and set the masses to zero m = 0 but keeping κ 6= µ. Physically, this
sends the masses of the gauge bosons associated with the Yang-Mills-Higgs mechanism to
infinity and we can thus integrate out the adjoint scalar field φ:

φa =
4π

µ
Tr
(
HH†ta

)
, φ0 =

4π

κ

1√
2N

[
Tr
(
HH†

)− ξ] . (11.1)

This leaves us with the non-Abelian Chern-Simons theory

LCSH = − µ

8π
εµνρ

(
Aaµ∂νA

a
ρ −

1

3
fabcAaµA

b
νA

c
ρ

)
− κ

8π
εµνρ

(
A0
µ∂νA

0
ρ

)
+ Tr (DµH)† (DµH)

− 4π2Tr
∣∣∣∣{ 1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
}
H

∣∣∣∣2 , (11.2)

which will be the focus of this Chapter. It still enjoys N = 2 supersymmetry and there are
3 parameters governing the solutions; the Abelian Chern-Simons coupling κ and the non-
Abelian Chern-Simons coupling µ and finally the winding number ν = k

n0
[6]. n0 denotes
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the greatest common divisor (gcd) of the Abelian charges of the holomorphic invariants of
G′, see [6]. For simple groups this coincides with the center as Zn0 . We will take k > 0.

There are three different phases of the theory at hand. An unbroken phase with 〈H〉 = 0

and a broken phase with 〈H〉 =
√

ξ
N

. In between there are partially broken phases. We will
consider only the completely broken phase in this paper.

The equations of motion are

µ

8π
εµνσF a

µν = −iTr
[
H†taDσH − (DσH)† taH

]
, (11.3)

κ

8π
εµνσF 0

µν = −iTr
[
H†t0DσH − (DσH)† t0H

]
, (11.4)

DµDµH = −4π2

[
1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
]2

H (11.5)

− 8π2

Nκ
Tr
([

1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
]
HH†

)
H

− 16π2

µ
Tr
([

1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†tb

)
tb
]
HH†ta

)
taH .

The tension, defined by the integral on the plane over the time-time component of the
energy-momentum tensor, is given by

T =

∫
C

Tr
{
|D0H|2 + |DiH|2 + 4π2

∣∣∣∣( 1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
)
H

∣∣∣∣2},
(11.6)

which by a standard Bogomol’nyi completion can be rewritten as

T =

∫
C

Tr
{ ∣∣∣∣D0H − i2π

(
1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
)
H

∣∣∣∣2 + 4
∣∣D̄H∣∣2}

− ξ√
2N

∫
C
F 0

12 + iTr
∫

C

[
∂2

(
H†D1H

)− ∂1

(
H†D2H

)]
. (11.7)

This leads immediately to the BPS-equations which need to be accompanied by the Gauss
law being the σ = 0 component of the Eqs. (11.3),(11.4)

D̄H = 0 , D0H = i2π

(
1N
Nκ

(
Tr
(
HH†

)− ξ)+
2

µ
Tr
(
HH†ta

)
ta
)
H . (11.8)

Rewriting the boundary term using the first BPS-equation, we have for the BPS saturated
vortices the tension

T = − ξ√
2N

∫
C
F 0

12 +
1

2
Tr
∫

C
∂2
i

(
HH†

)
= 2πξν , (11.9)

with ν being the U(1) winding number. By combining the BPS equations with the Gauss
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law, we obtain the following system

D̄H = 0 , (11.10)

F a
12t

a =
16π2

Nκµ

(
Tr
(
HH†

)− ξ)Tr
(
HH†ta

)
ta +

16π2

µ2
Tr
(
HH†tb

)
Tr
(
HH†

{
ta, tb

})
ta ,

(11.11)

F 0
12t

0 =
8π2

N2κ2
Tr
(
HH†

) (
Tr
(
HH†

)− ξ)1N +
16π2

Nκµ

(
Tr
(
HH†ta

))2
1N . (11.12)

An interesting comment is that the system only depends on three combinations of the cou-
plings; viz. κ2, µ2 and κµ. There are thus only two choices of signs giving different solutions
sign(κ) = ±sign(µ). This system is of a generic character and one can readily apply one’s
favorite group. Setting κ = µ, the BPS-equations become

D̄H = 0 , D0H =
i2π

κ

[
2Tr
(
HH†tα

)
tα − ξ

N
1N

]
H , (11.13)

which in turn yield the simplified system by combination with the Gauss law

D̄H = 0 , Fα
12t

α =
16π2

κ2

[
Tr
(
HH†

{
tα, tβ

})
Tr
(
HH†tβ

)− ξ

N
Tr
(
HH†tα

)]
tα .

(11.14)

In the next Section, we will consider the cases of G′ = SU(N), G′ = SO(N) and G′ =
USp(2M), and finally make the corresponding master equations.

11.2 Master equations

11.2.1 G = U(1)× SU(N)

Considering the case of U(1) × SU(N), the BPS-equations combined with the Gauss
law read

D̄H = 0 , (11.15)

F a
12t

a =
8π2

Nκµ

(
Tr
(
HH†

)− ξ)(HH† − 1N
N

Tr
(
HH†

))
+

8π2

µ2

[
HH†

(
HH† − 1N

N
Tr
(
HH†

))
(11.16)

− 1N
N

Tr
((
HH†

)2
)

+
1N
N2

(
Tr
(
HH†

))2
]
,

F 0
12t

0 =
8π2

N2κ2
Tr
(
HH†

) (
Tr
(
HH†

)− ξ)1N
+

8π2

Nκµ

[
Tr
((
HH†

)2
)
− 1

N

(
Tr
(
HH†

))2
]
1N .
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In this case, the generic vacuum is given by

〈H〉 =

√
ξ

N
1N . (11.17)

This vacuum allows for an unbroken global symmetry, the so-called color-flavor symmetry
which is the global part of the gauge transformation combined with the flavor symmetry.
This is of crucial importance for having orientational modes in vortex configurations.

Utilizing the moduli matrix formalism, we can immediately solve the first BPS-equation
and rewrite the second in terms of the new variables

H = S−1H0(z) , Āata = −iS ′−1
∂̄S ′ , Ā0t0 = −i∂̄ log s (11.18)

along with the definitions Ω ≡ ωΩ′,Ω′ ≡ S ′S ′†, ω ≡ ss† and Ω0 ≡ H0(z)H†0(z). The
field-strength matrices are

F a
12t

a = 2S ′−1
∂̄
[
Ω′∂Ω′−1

]
S ′ , F 0

12t
0 = −21N ∂̄∂ logω . (11.19)

In this U(1)× SU(N) case we can write down the two master equations like

∂̄
[
Ω′∂Ω′−1

]
=

4π2

Nκµ

1

ω

(
1

ω
Tr
(

Ω0Ω′−1
)
− ξ
)(

Ω0Ω′−1 − 1N
N

Tr
(

Ω0Ω′−1
))

+
4π2

µ2

1

ω2

[
Ω0Ω′−1

(
Ω0Ω′−1 − 1N

N
Tr
(

Ω0Ω′−1
))

− 1N
N

Tr
((

Ω0Ω′−1
)2
)

+
1N
N2

(
Tr
(

Ω0Ω′−1
))2

]
, (11.20)

∂̄∂ logω = − 4π2

N2κ2

1

ω
Tr
(

Ω0Ω′−1
)( 1

ω
Tr
(

Ω0Ω′−1
)
− ξ
)

+
4π2

Nκµ

1

ω2

[
Tr
((

Ω0Ω′−1
)2
)
− 1

N

(
Tr
(

Ω0Ω′−1
))2

]
. (11.21)

Setting the couplings equal κ = µ, we can write the U(N) Chern-Simons BPS-equations
and master equation as simple as

Fα
12t

α =
8π2

κ2
HH†

(
HH† − ξ

N
1N

)
, (11.22)

∂̄
[
Ω∂Ω−1

]
=

4π2

κ2
Ω0Ω−1

[
Ω0Ω−1 − ξ

N
1N

]
. (11.23)

The boundary conditions for these master equations coincide with the weak coupling solu-
tions (11.48).

11.2.2 G = U(1)× SO(N) and G = U(1)× USp(2M)

Considering now the gauge groups G = U(1) × SO(N) and G = U(1) × USp(2M)
on the same footing with their corresponding invariant tensor J , which has the properties
J†J = 1N and JT = εJ with ε = ±1 for SO(N) and USp(2M), respectively.
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The vacuum has the generic form [5]

〈H〉 = diag (v1, v2, . . . , vN) , vi ∈ R+ , (11.24)

however, we will consider the most symmetric vacuum allowing for the global color-flavor
symmetry, viz. we will here use (11.17). We have the following system which is obtained
by combining the BPS equations with the Gauss law and applying respective algebras

D̄H = 0 , (11.25)

F a
12t

a =
4π2

Nκµ

(
Tr
(
HH†

)− ξ) (HH† − J† (HH†)T
J
)

+
2π2

µ2

[(
HH†

)2 − J†
((
HH†

)2
)T

J

]
,

F 0
12t

0 =
8π2

N2κ2
Tr
(
HH†

) (
Tr
(
HH†

)− ξ)1N
+

4π2

Nκµ
Tr
(
HH†

(
HH† − J† (HH†)T

J
))

1N ,

which lead to the master equations

∂̄
[
Ω′∂Ω′−1

]
=

2π2

Nκµ

1

ω

(
1

ω
Tr
(

Ω0Ω′−1
)
− ξ
)(

Ω0Ω′−1 − J†
(

Ω0Ω′−1
)T

J

)
+
π2

µ2

1

ω2

[(
Ω0Ω′−1

)2

− J†
((

Ω0Ω′−1
)2
)T

J

]
, (11.26)

∂̄∂ logω = − 4π2

N2κ2

1

ω
Tr
(

Ω0Ω′−1
)( 1

ω
Tr
(

Ω0Ω′−1
)
− ξ
)

− 2π2

Nκµ

1

ω2
Tr
(

Ω0Ω′−1

(
Ω0Ω′−1 − J†

(
Ω0Ω′−1

)T

J

))
. (11.27)

The boundary conditions for these master equations coincide with the weak coupling solu-
tions (11.52).

11.2.3 Energy density and flux densities
Rewriting the energy density (11.9) in terms of our new variables and remembering the

boundary term which vanishes when integrating over the entire plane, while it nevertheless
produces a big difference between the magnetic flux density and the energy density, we have

E = 2ξ∂̄∂ logω + 2∂̄∂

(
1

ω
TrΩ0Ω′−1

)
. (11.28)

However, the total energy

E =

∫
C
E = 2πξν =

2πξk

n0

, (11.29)
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is simply proportional to the topological charge as always.
The Abelian magnetic flux density is the first term (up to a factor) in the energy density

B = F 0
12 = −2

√
2N ∂̄∂ logω , (11.30)

whereas the non-Abelian flux is the matrix defined in Eq. (11.19). The Abelian electric field
density reads

Ei = F 0
i0 =

2π

κ

√
2

N
∂i

(
1

ω
Tr
(

Ω0Ω′−1
))

, (11.31)

while the non-Abelian electric field density is given by

Ea
i t
a = F a

i0t
a =

4π

µ
∂iTr

(
HH†ta

)
ta . (11.32)

This can be written for G′ = SU(N) as

Ea
i t
a =

2π

µ
∂i

[
1

ω

(
S ′−1

Ω0Ω′−1
S ′ − 1

N
Tr
(

Ω0Ω′−1
))]

, (11.33)

while for G′ = SO(N) or G′ = USp(2M) it is

Ea
i t
a =

π

µ
∂i

[
1

ω
S ′−1

(
Ω0Ω′−1 − J†

(
Ω0Ω′−1

)T

J

)
S ′
]
. (11.34)

11.3 Solutions
In the Abelian Chern-Simons theory, there exists a rigorous existence proof of the solu-

tions in Ref. [258]. To our knowledge this has not rigorously been proved in the theory at
hand. In the case of the vortices in the Yang-Mills-Higgs theory, the “covariant holomor-
phic” condition on the Higgs fields D̄H = 0, which is solved by the moduli matrix formal-
ism, does uniquely determine the full moduli space of vortices via the Hitchin-Kobayashi
correspondence [259, 260, 261, 134], which however has only been proved on compact
spaces. This means that the corresponding master equations do not induce further moduli.
For the vortices with the U(N) gauge group, an index theorem has been given in Ref. [9]
while for generic gauge groups (under certain conditions) an index theorem has been given
in Ref. [3]. The index computed gives the number of moduli and does indeed correspond to
the number of moduli found in the moduli matrix.

The first part of constructing a solution is to write down the moduli matrix. Here we
simply follow the way paved by the paper [6] using holomorphic invariants of the gauge
subgroup G′. This boils down to some constraints for the moduli matrix to obey. A few
examples of interest here is the case of G′ = SU(N)

detH0(z) = zk +O (zk−1
)
, (11.35)

while in the case of G′ = SO,USp, respectively, we have

HT
0 (z)JH0(z) = z

2k
n0 J +O

(
z

2k
n0
−1
)
, (11.36)
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where k is the vortex number (recall that ν = k
n0

is the U(1) winding) and n0 = 2 in case
of SO(2M) and USp(2M) while n0 = 1 for SO(2M + 1), M being positive integers. For
SU(N), however n0 = N .

The rather complicated looking master equations found in the last Section are assumed
to have a unique solution for each moduli matrix H0(z) (up to V equivalence, see Ref. [6]).
That is the moduli matrices are redundant and have to be identified by the following V
transformation

H0(z) ∼ V (z, z̄)H0(z) , S(z, z̄) ∼ V (z, z̄)S(z, z̄) , V ∈ GC . (11.37)

Here we conjecture the existence and uniqueness of the solutions to the master equation for
each moduli matrix (up to the V equivalence). To provide plausibility for this claim we shall
continue in two directions.

First we consider the weak coupling limit κ → 0 and µ → 0, which seems like an odd
limit to take, but having an advantage. Looking at the theory (1.202) it is immediately seen
that the matter fields are forced to stay in the vacuum manifold corresponding to the strong
coupling limit of the normal non-Abelian vortex (i.e. with only a Yang-Mills kinetic term).
In turn, this gives us a unique solution which in fact is the same solution as found in the
strong coupling limit of the non-Abelian vortex with only a Yang-Mills kinetic term. This
solution, appropriate only for vortices of the semi-local type, are usually called lumps in the
literature.

The second direction we will take will simply be to find some solutions by numerical
calculations.

Now the existence of the solutions to the master equations, as we argue, makes it possible
to exploit a lot of results developed in the literature. In short,

the moduli space of non-Abelian Chern-Simons k vortices with gauge group G is
equal to the moduli space of the non-Abelian Yang-Mills k vortices with gauge group G.

(11.38)

Moduli spaces of the non-Abelian vortices inN = 2 SQCD has been found in the literature
in Refs. [9, 100] for U(N) and in Refs. [3] for SO(N), USp(2M).

Here we will summarize a few results from the literature. In the pioneering papers [9, 97]
discovering the non-Abelian vortices with gauge group U(N) (in contrast to the formerly
found ZN strings) the moduli space of a single vortex string was found to be

Mk=1,G′=SU(N) = C× CPN−1, (11.39)

where the first factor denotes the position in the transverse plane while the second factor are
orientational modes. For well separated k vortices, the moduli space can be composed as
simply the symmetric product of that of the single vortex. This is not the case, when the
centers coincide. In the k = 2, U(2) case, the moduli space has been found explicitly in the
Refs. [110, 111]

Mk=2,G′=U(2) = C×WCP 2
2,1,1 , (11.40)

which decomposes into a center-of-mass position and a weighted complex projective space
with unequal weights giving rise to a conical type of singularity. In Ref. [3] the moduli
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spaces of vortices with gauge groups G = U(1) × SO(N) and G = U(1) × USp(2M)
have been found. A complication arises due to the fact that already for NF = N flavors,
the vortices are in general of the semi-local type (i.e. they have polynomial tails in their
profile functions). The spaces quoted here correspond to the vortices of local type, thus they
are constrained to have holomorphic invariants with coincident zeroes. In the language of
Ref. [3] this is obtained by constraining the vortices by the so-called strong condition

HT
0 (z)JH0(z) = (z − z0)

2k
n0 J . (11.41)

The single local vortex with G′ = USp(2M) has the moduli space

Mk=1,G′=USp(2M) = C× USp(2M)

U(M)
, (11.42)

while in the case of G′ = SO(2M) it is found to be

Mk=1,G′=SO(2M) =

(
C× SO(2M)

U(M)

)
+

∪
(

C× SO(2M)

U(M)

)
−
, (11.43)

where the ± denotes the chirality as described in detail in Ref. [3] which is deeply rooted in
the fact that the first homotopy group has in addition to the integers a Z2 factor. This can also
be interpreted as two spinor representations which is exactly the irreducible representations
of the dual group G̃′, where the dual is defined as being the group having the root vectors
~α∗ = ~α

~α·~α . For the k = 2, G′ = SO(2M) the following orientational moduli spaces have
been found to be locally

Mk=2,G′=SO(4m),QZ2
=+1 = Rm

+ ×
SO(4m)

USp(2)m
× Z2 , (11.44)

Mk=2,G′=SO(4m),QZ2
=−1 = Rm−1

+ × SO(4m)

U(1)× USp(2)m−1 × SO(2)
, (11.45)

Mk=2,G′=SO(4m+2),QZ2
=+1 = Rm

+ ×
SO(4m+ 2)

U(1)× USp(2)m
× Z2 , (11.46)

Mk=2,G′=SO(4m+2),QZ2
=−1 = Rm

+ ×
SO(4m+ 2)

USp(2)m × SO(2)
. (11.47)

In the case of k = 1, G′ = SO(2M + 1), the moduli spaces are quite similar to the k = 2
even case.

11.4 Weak coupling limit

11.4.1 G = U(1)× SU(N)

Taking κ = µ→ 0, we obtain from the D term conditions

Ω′ = (det Ω0)−
1
N Ω0 , ω =

N

ξ
(det Ω0)

1
N , Ω =

N

ξ
Ω0 , (11.48)
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which can be packaged together as a U(N) field Ω. Instead of taking both couplings simul-
taneously to weak coupling, we can play a game of taking only one of them, keeping the
other finite (non-infinitesimal). Taking κ→ 0 and keeping µ finite we obtain

ω =
1

ξ
TrΩ0Ω′−1

, (11.49)

at the zeroth order in κ while at first order we get the constraint

NTr
((

Ω0Ω′−1
)2
)

=
(

Tr Ω0Ω′−1
)2

. (11.50)

We note that only the Abelian field is determined, however at first order in the coupling
constant we obtain a single constraint on the non-Abelian fields. Taking instead µ → 0
keeping κ finite we have

Ω′ = ΛΩ0 , with Λ ∈ const. , (11.51)

to both zeroth and first order in µ.

11.4.2 G = U(1)× SO(N) and G = U(1)× USp(2M)

Taking κ = µ→ 0 we have from the D term conditions [3, 5]

Ω′ = H0(z)
1N√
M †M

H†0(z) , ω =
1

ξ
Tr
√
M †M , (11.52)

where M = HT
0 (z)JH0(z) is the meson field of the SO,USp theories according to the

choice of the gauge group and in turn invariant tensor.
A comment in store is that the Chern-Simons term is simply switched off in this limit and

the lumps are the same as the ones living in the Yang-Mills theories experiencing infinitely
massive gauge bosons. The point here, however, is to argue by continuity the existence and
uniqueness of the solutions to the master equations for a given moduli matrix H0(z) (up to
the V -equivalence relation).

11.5 Numerical solutions

11.5.1 Example: U(N)

Let us do a warm-up and consider the single U(N) Chern-Simons vortex (κ = µ) as has
been found in Refs. [144, 143], however doing it in our formalism. Taking a simple moduli
matrix

H0(z) = diag (z,1N−1) , (11.53)

which of course satisfies the constraint (11.35), thus we can use the Ansatz for Ω

Ω = eψdiag
(
e(N−1)χ, e−χ1N−1

)
, (11.54)
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leading to the two coupled equations of motion

∂̄∂ [ψ + (N − 1)χ] = −4π2

κ2
|z − z0|2 e−ψ−(N−1)χ

(
|z − z0|2 e−ψ−(N−1)χ − ξ

N

)
,

(11.55)

∂̄∂ [ψ − χ] = −4π2

κ2
e−ψ+χ

(
e−ψ+χ − ξ

N

)
. (11.56)

Notice that the two equations decouple in the sense that there only appear the combinations
ψ + (N − 1)χ and ψ − χ. In fact it is easily seen that in this case, the field combination
ψ − χ can be in the vacuum in all C which trivially solves the second equation. However,
the first equation still needs to be solved numerically. The boundary conditions are

ψ∞ = log

(
N |z| 2N
ξ

)
, χ∞ = log

(
|z| 2N

)
. (11.57)

The equations become essentially Abelian when the couplings are equal κ = µ, as was noted
in Ref. [144]. The energy density is given by

E = 2ξ∂̄∂ψ + 2∂̄∂
[|z|2e−ψ−(N−1)χ + (N − 1)e−ψ+χ

]
, (11.58)

where the last term is the boundary term which of course integrates to zero. The Abelian
and non-Abelian magnetic flux densities are given by

F 0
12 = −2

√
2N ∂̄∂ψ , F a

12t
a = −2

√
2N(N − 1) ∂̄∂χ t , (11.59)

where the following matrix has been defined for convenience

t ≡ 1√
2N(N − 1)

diag (N − 1,−1N−1) , (11.60)

which is traceless and has the trace of its square normalized to one half. The Abelian electric
field density is

Er =
2π

κ

√
2

N
∂r
[
r2e−ψ−(N−1)χ + (N − 1)e−ψ+χ

]
, (11.61)

while the non-Abelian electric field density is

Ea
r t
a =

2π

µN

√
2N(N − 1)∂r

[
r2e−ψ−(N−1)χ − e−ψ+χ

]
t . (11.62)

We will find in the next Subsection, that the numerical solution for this vortex for N = 2 is
up to rescaling of some parameters equivalent to the vortex studied in the next Subsection
(when κ = µ). Thus the concrete graphs are shown only for the vortex solution below.
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11.5.2 Example: U(1)× SO(2M) and U(1)× USp(2M)

Let us take a simple example of a moduli matrix

H0(z) = diag (z1M ,1M) , (11.63)

which surely satisfies the constraint (11.36). We take the Ansatz

Ω′ = diag
(
eχ1M , e

−χ1M
)
, ω = eψ , (11.64)

where det Ω′ = 1 is manifest. The equations of motion in terms of the new fields are

∂̄∂χ = − π2

κµ

(
|z|2e−ψ−χ + e−ψ+χ − ξ

M

)(|z|2e−ψ−χ − e−ψ+χ
)

− π2

µ2

((|z|2e−ψ−χ)2 − (e−ψ+χ
)2
)
, (11.65)

∂̄∂ψ = − π2

κ2

(|z|2e−ψ−χ + e−ψ+χ
)(|z|2e−ψ−χ + e−ψ+χ − ξ

M

)
− π2

κµ

(|z|2e−ψ−χ − e−ψ+χ
)2
. (11.66)

It is interesting to note that under rescaling of the FI parameter ξ →Mξ, the above equations
of motion are exactly the ones of the U(1)× SU(2) theory with the Ansatz used in the last
Section. The boundary conditions are

ψ∞ = log

(
2M

ξ
|z|
)
, χ∞ = log (|z|) , (11.67)

and the energy density reads

E = 2ξ∂̄∂ψ + 2M∂̄∂
[|z|2e−ψ−χ + e−ψ+χ

]
, (11.68)

where the first term is proportional to the Abelian magnetic flux density

F 0
12 = −4

√
M ∂̄∂ψ , (11.69)

and the last is the boundary term which integrates to zero, while the non-Abelian magnetic
field density reads

F a
12t

a ≡ FNA
12 t = −4

√
M ∂̄∂χ t , t ≡ 1

2
√
M

diag (1M ,−1M) . (11.70)

The Abelian electric field density reads

Er =
2π
√
M

κ
∂r
[
r2e−ψ−χ + e−ψ+χ

]
, (11.71)

whereas the non-Abelian electric field density is

Ea
r t
a ≡ ENA

r t =
2π
√
M

µ
∂r
[
r2e−ψ−χ − e−ψ+χ

]
t . (11.72)
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Figure 11.1: (a) Profile functions for three different values of the coupling constants; a: κ = 4, µ =
2; b: κ = 2, µ = 2; c: κ = 1, µ = 2; the functions are plotted in traditional style with the winding
field rising linearly and the non-winding field being constant at the origin. The FI parameter ξ = 2.
Notice that the VEV for these functions is 2−

1
2 . (b) The energy density E for the vortex for the same

three different values of the couplings. All the energy densities integrate to πξ, within an accuracy
better than ∼ 10−4.

We show the vortex with this Ansatz corresponding to different values of the coupling con-
stants κ, µ in the following figures. Here we will take for definiteness the group G′ to be
SO(4) or USp(4) hence M = 2, which within the chosen Ansatz are equivalent. We fur-
thermore set ξ = 2. The total energy is thus (recall the Ansatz is for a single k = 1 vortex)

E =

∫
C
E = πξ . (11.73)

In Fig. 11.1a we show the profile functions of the vortex in the traditional way, where the
color-flavor matrix is parametrized as follows

H = diag
(
f(r)eiθ12, g(r)12

)
, (11.74)

which of course is equivalent to the parametrization in terms of ψ, χ. In Fig. 11.1b the
energy density of Eq. (11.68) is shown. The integral of the energy density is identically
equal to the integral of the Abelian magnetic flux, as it should be. We see the vortex size
is proportional to the coupling constants. In Fig. 11.2 we show the Abelian (a) and the
non-Abelian (b) magnetic field, respectively. We observe that the Abelian magnetic field is
negative at the origin while the non-Abelian magnetic field is positive, in the κ = 4, µ = 2
case. The contrary holds in the κ = 1, µ = 2 case where the non-Abelian magnetic field is
negative at the origin while the Abelian field is positive. It turns out that the combination(

κF 0
12 + µFNA

12

)∣∣
r→0

= 0 . (11.75)

An immediate consequence is that for |κ| � |µ|, |FNA
12 | � |F 0

12| at the origin and vice
versa. Plots of the Abelian and non-Abelian magnetic fields normalized as in Eq. (11.75)
are shown in Fig. 11.4 with κ = 4, µ = 2 in (a) and κ = 1, µ = 2 in (b), respectively. At
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Figure 11.2: (a) The Abelian magnetic field F 0
12 (trace-part) for three different values of the cou-

plings. Notice the equal coupling case has zero magnetic field at the origin while the different cou-
pling cases have negative and positive values, respectively. (b) The non-Abelian magnetic field F a12

(traceless part) for different values of the couplings. Notice the opposite behavior of the non-Abelian
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the origin this combination cancels to a numerical accuracy better than 10−5. First let us
demonstrate the formula (11.75) by calculating the fields in the limit r → 0

κF 0
12

∣∣
r→0

= −µFNA
12

∣∣
r→0

= 4π
√
M

[
1

κ
e−ψ+χ

(
e−ψ+χ − ξ

M

)
+

1

µ

(
e−ψ+χ

)2
]
. (11.76)

Note that the value of the magnetic fields only depends on the field combination ψ− χ, and
it is understood that it has to be evaluated at the origin in the above equation. Secondly, let
us demonstrate that the magnetic fields are zero at the origin in the case of equal couplings.
Subtracting Eq. (11.65) from Eq. (11.66) we have

∂̄∂ (ψ − χ) = −π
2

κ2

[(
1− κ2

µ2

)(|z|2e−ψ−χ)2
+

(
1− κ

µ

)(
2e−ψ+χ − ξ

M

)
|z|2e−ψ−χ

+

(
1 +

κ

µ

)2 (
e−ψ+χ

)2 − ξ

M

(
1 +

κ

µ

)
e−ψ+χ

]
, (11.77)

which depends on z, z̄ when the coupling constants are different, κ 6= µ. However, when
the coupling constants are equal, Eq. (11.77) reads

∂̄∂ (ψ − χ) = −4π2

κ2

(
e−ψ+χ − ξ

2M

)
e−ψ+χ , (11.78)

which allows the field combination ψ − χ to stay constant with the value

ψ − χ = log

(
2M

ξ

)
. (11.79)

Plugging this (constant) solution into Eq. (11.76) we obtain readily F 0
12 = FNA

12 = 0 in the
limit r → 0.

In Fig. 11.3 is shown the Abelian (a) and non-Abelian (b) electric fields with different
values of the couplings.

In Fig. 11.5 we show a sketch of the magnetic fields of Abelian and non-Abelian kinds,
respectively, in the case of κ > µ (a) and in the case of κ < µ (b). The integral over
the plane of the Abelian magnetic field density is proportional to the topological charge of
the vortex, the winding number which in turn renders the soliton topologically stable. The
vortex solution with negative winding number k < 0 can be interpreted as an anti-vortex.
Hence, one could wonder which interpretation to give the small substructure found in this
vortex solution – a small anti-vortex trapped in the non-Abelian vortex, as a bound state, not
rendering the solution unstable.

Opposite signs of coupling constants
We will now consider taking one of the couplings to be negative, say κ < 0 and µ > 0.
Choosing both signs negative yields the same solution as already mentioned, however with
flipped electric fields. In the case of κ > 0 and µ < 0, the solutions are equivalent to the
ones we will consider now, just with the signs flipped of the electric fields. The Chern-
Simons characteristics have been lost in this case, the vortex instead has the magnetic field
concentrated at the origin – just as in the case of the ANO vortex or the single U(N) non-
Abelian generalization. In Fig. 11.6 the profile functions and energy densities for different
solution are shown. In Fig. 11.7 the corresponding magnetic fields are shown while in
Fig. 11.8 the electric fields are shown.
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Figure 11.4: Differently normalized Abelian and non-Abelian magnetic fields as κF 0
12 and µFNA

12

for (a) κ = 4, µ = 2 and (b) κ = 1, µ = 2. This combination cancels exactly at the origin (to a
numerical accuracy better than ∼ 10−5). The FI parameter ξ = 2.
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Figure 11.5: (a) Sketch of the magnetic fields where the Abelian (red/left) is negative at the origin
and the non-Abelian (blue/right) is positive for κ > µ. (b) Contrarily the Abelian (red/left) is positive
at the origin while the non-Abelian (blue/right) is negative for κ < µ.
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Figure 11.6: (a) Profile functions for three different values of the coupling constants; a: κ =
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with the winding field rising linearly and the non-winding field being constant at the origin. The
FI parameter ξ = 2. Notice that the VEV for these functions is 2−
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2 . (b) The energy density E for

the vortex for the same three different values of the couplings with opposite signs. All the energy
densities integrate to πξ, within an accuracy better than∼ 10−4. Notice that the extrema of the energy
density is at the origin, just as in the case of the ANO vortices or the non-Abelian generalizations.
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Figure 11.8: (a) The Abelian electric field in the radial direction Er (trace-part) and (b) The non-
Abelian electric field ENA

r (traceless part) for three different values of the couplings with opposite
signs. The FI parameter ξ = 2. Note that the electric fields are back-to-back.

11.6 Discussion
In this Chapter, we have thus brought the powerful moduli matrix formalism into the

non-Abelian Chern-Simons model (which supports topological non-Abelian vortices), and
have conjectured that the moduli spaces of the non-Abelian vortex solutions of these systems
are indeed identical to those of the vortex solutions in the Yang-Mills-Higgs models with
corresponding gauge groups. We have not proved that every moduli matrix has a unique and
existing solution to the master equations found. Nevertheless we have argued the plausibility
of such a claim by taking the weak coupling limit, which immediately yields the lumps of
the Yang-Mills-Higgs models, as it is just the algebraic solutions to the D-term conditions.

We have then studied some numerical solutions of non-Abelian vortices, by choosing an
Ansatz to the master equations, working mainly with the G′ = SO(4) and G′ = USp(4)
gauge groups. We have studied the case of different couplings with both couplings positive
yielding vortex solutions with a small negative Abelian (non-Abelian) magnetic field den-
sity at the origin and a corresponding positive non-Abelian (Abelian) magnetic field density,
which have a combination that is always zero (at the origin). Keeping the couplings equal
provides the typical Chern-Simons characteristic that the magnetic field vanishes at the ori-
gin yielding a ring structure. These new types of solutions could perhaps be interpreted as
an anti-vortex sitting inside the non-Abelian vortex as a stable bound state, with the stability
provided by topological arguments.

An interesting question is to which extent this substructure found in the non-Abelian
vortex solutions alters the dynamics of the vortices.

Furthermore, by changing the relative sign of the coupling constants, a vortex solution
with the magnetic field density concentrated at the origin has been found.

An obvious future study related to these vortices and also to the ones of Ref. [3] could be
to make an explicit construction with exceptional groups and investigating the corresponding
moduli spaces. Especially interesting would be the center-less groups.

Another interesting path to follow is to consider the construction of the non-Abelian
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vortices in Chern-Simons models with more supersymmetries, e.g. considering the model of
Aharony-Bergman-Jafferis-Maldacena [262]. An Abelian non-relativistic Jackiw-Pi vortex
has already been found in this model [263]. Another attempt to construct vortices in the
latter model has recently been made, resulting in the non-Abelian vortex equations of the
Yang-Mills-Higgs models [264].
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Final remarks





CHAPTER 12

Discussion and outlook

Let us summarize the most important results of this Thesis and conclude with an outlook.
After we have given an introduction to the rich subject of solitons, and in particular vortices
with references to the literature, we have introduced the notation and the many models which
we work on and many of the equations have been derived step-by-step in Chap. 1.

The first direction of the Thesis was in the area of Abelian Chern-Simons vortices with
focus on the large magnetic flux limit, where the well-known domain wall has been con-
firmed to describe the vortex and further used to find the type III vortex; first attractive and
when accumulating flux to a certain point it becomes a repulsive cluster. Then an interesting
observation for small Chern-Simons coupling constant, is that there should exist a smooth
phase transition for very large magnetic flux.

The major part of this Thesis describes vortices and their associated strong coupling
cousins, namely the corresponding lump solutions in theories with U(1) × SO(N) and
U(1)×USp(2M) gauge groups. The first main result is found within an Ansatz to solve the
strong condition, i.e. for local vortices, where we formally find the quantization condition
for the vortices which is the same as that of Goddard-Nuyts-Olive-Weinberg (GNOW) for
monopoles. It is intriguing that it is exactly the dual group that comes out of this calculation.
This is a further check for the ideas that the monopoles confined by vortices describe a (dual)
superconductor as the confinement mechanism in the gauge theory in question. Studying in
depth the moduli spaces of the local vortices we find the connectedness properties of the
moduli spaces and represent the results graphically on the weight lattices of the dual groups.
An important result is the topological disconnection given by the non-trivial π1(G′), which
we in these gauge theories have denoted the Z2 charge. This holds even when turning on
semi-local moduli parameters. Another important result has come out from the studies of the
semi-local vortices, namely that even for the minimal number of matter fields (multiplets)
in order to obtain a color-flavor-locked type of vacuum, the vortex is semi-local if it is
not restricted further by the so-called strong condition. This fact gives rise to the interest
in studying the lumps in these theories, as they are rather general in the limit of strong
coupling or low energies. The in-depth studies of the moduli spaces have been cross-checked
with an index-theorem calculation agreeing with the number of moduli found within the
moduli matrix formalism – a further non-trivial check to the assumption of existence and
uniqueness properties of the master equations. In this arena we constructed as low-energy
effective theories for the gauge theories in question, the Kähler quotients with the correct
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symmetry properties with explicit formal solutions, in the cases of U(1)×SO(2M), U(1)×
USp(2M), SO(2M) and USp(2M). Furthermore, in the cases of SO(2M), USp(2M) we
have constructed also the hyper-Kähler quotients due to a trick using the algebra of the
theories, which correspond to the low-energy effective theory for the N = 2 theories. We
discuss the vacuum properties of the theories and make an expansion formula for the result
of the Kähler quotient calculation which we further use to obtain the scalar curvature and
metric on the manifolds. Finally, we discuss the connection between the moduli spaces
of vortices and the moduli spaces of lumps which turn out to be identical except for sick
points not satisfying the so-called lump condition. We construct explicitly fractional lump
solutions, the effective actions and identify the normalizable zero-modes of the single lump
configurations.

The next part of the Thesis was concerned with the fractional vortices and makes a
more detailed discussion of the mechanisms giving rise to the earlier found fractional lumps,
especially using the simplest possible (BPS) Abelian gauge theories. An interesting result
in this connection is related to the substructure of the solution and their dependence of the
geometry of the target manifold.

The final part of this Thesis was dedicated to the non-Abelian Chern-Simons theories
with generic gauge groups. Formally, the very powerful moduli matrix formalism has been
ported to this kind of theories yielding interesting results about their moduli spaces and it
was conjectured that they indeed are identical with the ones of the theories with only the
Yang-Mills kinetic term, which have been studied in much more detail. Explicit solutions
were obtained numerically providing new results for these theories with orthogonal and
symplectic groups and furthermore a splitting of the magnetic flux was discovered. In the
usual Abelian or non-Abelian theories with equal gauge coupling constants for the Abelian
and the non-Abelian part, the magnetic flux is observed to vanish at the origin of the vortex
solution. In the case of different gauge coupling, however, the magnetic fields (Abelian and
non-Abelian) split yielding one magnetic field positive and another magnetic field negative,
both non-vanishing. However, a linear combination of both of them is found always to
vanish at the origin.

12.1 Outlook
We will here give a brief account of the further developments and ideas to continue this

fascinating line of research described in this Thesis.
The first immediate idea to consider is the impact of the non-BPS corrections on the

vortices and lumps described in this Thesis. Along this path comes the question of stability.
Analytically, this can be done with our techniques in the near-BPS regime. For strong non-
BPS-ness, we need to turn to numerical methods, which is a far more tedious step.

The low-energy effective vortex theory, which in the case of the U(N) theories is the
CPN−1 σ model, is not yet known for generic gauge groups. It would be very interesting to
develop these effective theories, understand the vacuum structure and spectra of these theo-
ries and possibly confirm the coincidence with the spectra of the four-dimensional theories.

There are also several unanswered questions which are interesting and of importance.
For instance, in the case of the Kähler quotients, we know that in the quantum regime,
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corrections have to kick in, and their importance surely cannot be underestimated. For the
hyper-Kähler quotients we are in much better shape due to the non-renormalization theorems
in supersymmetry, but we have not been able to resolve the explicit quotient in the case with
a common Abelian factor. A further very interesting question is about the deformation of
the Kähler potential in order to admit a Ricci-flat (non-compact Calabi-Yau) metric.

Higher representations of the gauge groups would be a very interesting development,
and especially the adjoint representation of the matter fields, as it relates our theories with
orthogonal groups and symplectic groups to multi-instanton moduli spaces in those theories.

Another interesting development is the extension of our program to the exceptional
groups, which for instance in relation with the center-less groups could be very interest-
ing in conjunction with lattice studies.

Certain mass-deformations of our theories could be very interesting for instance in con-
junction with domain wall solutions. This could be interesting also if considering 1/4 BPS
soliton junctions which furthermore are interesting in relation with cosmic string networks.

An explicit calculation of the second homotopy group for the orthogonal and symplectic
groups is interesting for deepening the understanding of the fractional vortices appearing in
these theories and for understanding the stratified geometry of the target space of the lump
solutions.

For the lump solution, also here the non-BPS corrections are very interesting and for
instance in a possible relation to the already found lumps supported by π2(M) ' Z2. Also
the possibility of Q-lumps in the newly obtained Kähler quotients is quite interesting.

Let us mention a few developments already under study. One direction is related to the
theory with both Chern-Simons and Yang-Mills kinetic term giving in-depth details about
the underlying structure of the vortices. Another problem is about the complex of non-
Abelian monopoles and vortices in the Higgs phase and the investigation of their mutual
transformation properties.

Let us also mention the possibilities to port our techniques to the area of condensed mat-
ter physics, where new types of superconductors are being developed in the laboratory. This
has amazing aspects for instance in relation with the realization of a non-Abelian supercon-
ductor, experimentally. Here an interesting and important subject to study are the so-called
quantized vortices which have been found recently, which exhibit not only a non-trivial
phase factor like normal vortices but combines it with a rotation of spin or orbital orien-
tation. This type of vortices enjoys non-Abelian and non-commutative properties which
are severely important for instance in collisions. Here so-called rung-vortices can arise in
many cases, which are deeply rooted in the non-Abelian nature. These systems with their
vortices are interesting because of the potential applications. Proposals for experiments are
also possible here, for example in Bose-Einstein-Condensates (BECs), biaxial nematic liq-
uid crystals and superconductors with high internal degrees of freedom, to just mention a
few.

A further line of research that could have promising merits, is the understanding of non-
BCS (Bardeen-Cooper-Schrieffer) superconductors, which actually exists in nature, mostly
being made of composite materials and cuprates. These exotic kinds of superconductors
are recently being explored using holographic superconductor techniques. A deeper under-
standing here would certainly be important.
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Finally, interesting possibilities lie in the aspect of M-theory via the investigation of the
M2-branes using Chern-Simons theory with a sufficient amount of supersymmetry. This is
also interesting due to the existing gravity dual of these theories and not least because of the
possible impact on the unraveling of the theory underlying string theory – viz. M-theory.
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APPENDIX A

Generators of SO(2N), USp(2N) and
SO(2N + 1)

In a standard basis J = 1N , the SO(N) generators are given by

A , (A.1)

whereA are anti-symmetric imaginary matrices. Changing the base for SO(2M) to the base
with J given by Eq. (1.32) by a unitary transformation

OTO = 1, O → SOS−1 , S =
1√
2

(
1M i1M
i1M 1M

)
, (A.2)

yields the relation

OTJO = J , iJ = STS , (A.3)

where J is exactly the invariant tensor (1.32). This is valid for elements of SO(2M), but
the same transformation can be applied to the generators yielding the constraint

tTJ + Jt = 0 , (A.4)

which is satisfied by (
A BA

B†A −AT

)
, (A.5)

where BT
A = −BA is anti-symmetric and A† = A is Hermitian and both are complex

matrices. Changing the tensor to the one for USp(2M) in Eq. (1.32), the generators are on
the form (

A BS

B†S −AT

)
, (A.6)

where BT
S = BS is symmetric and A† = A is Hermitian and both are complex matrices. In

the case of SO(2M + 1), the generators with the invariant tensor of Eq. (1.32) are of the
form  A BA f ∗

B†A −AT f
−fT −f † 0

 , (A.7)
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where BT
A = −BA is anti-symmetric and A† = A is Hermitian and both are complex

matrices, while f is a complex vector.
It will be useful to also state the complexified generators in this basis (1.32). In the case

of SO(2M)C, USp(2M)C we have(
A BA,S

CA,S −AT

)
, (A.8)

where subscript A, S is for anti-symmetric and symmetric, for SO(2M)C and USp(2M)C,
respectively. All the matrices A,BA,S, CA,S are complex. In the case of SO(2M + 1)C we
have  A BA f

CA −AT g
−gT −fT 0

 , (A.9)

where BT
A = −BA and CT

A = −CA are anti-symmetric, A,BA, CA are complex matrices
and f, g are complex vectors.



APPENDIX B

Spatially separated vortices

When the two vortices are separated, i.e. δ 6= 0, the second equation of Eq. (5.46)
(together with Tr Γ = 0) is solved by

Γ = o′ Γ0 o
′−1, Γ0 ≡

√
δ

(
1M−r

−1M−r

)
. (B.1)

There remains an arbitrariness under reshuffling of the form,

o′ → o′s , Γ0 → s−1Γ0s , s ≡
(
u′1

u′2

)
, (B.2)

where u′i ∈ GL(M − r,C). Then the first condition in Eq. (5.46) leads to

o′TJ2(M−r) o′ =
(

0 X
εXT 0

)
∼ J2(M−r) , (B.3)

where we have used the above-mentioned freedom to arrive at the last form for J2(M−r).
The above relation means that o′ is an element of O(2(M − r))C (USp(2(M − r))C). There
exists still an unphysical transformation

u′1
T = u′2

−1 ≡ u ∈ GL(M − r,C) . (B.4)

Thus the solution of the strong condition (5.46) with δ 6= 0 is given by

Γ ∈


{

C∗ ×
[
O(2(M−r),C)
U(M−r)

]C
}
/Z2 for G′ = SO(2M) ,{

C∗ ×
[
USp(2(M−r),C)

U(M−r)

]C
}
/Z2 for G′ = USp(2M) ,

(B.5)

with the first C∗ factor being the relative distance
√
δ. The Z2 factors in the denominators

come about due to the fact that a combination of a π-rotation in the x1−x2 space
√
δ → −√δ

and a permutation o′ → o′p, satisfying pΓ0p
−1 = −Γ0 is an identity operation.





APPENDIX C

Fixing NG modes for Sec. 5.4.1

Let us go into a detailed investigation, in order to verify the results in Sec. 5.4.1. In the
first place note that a0;A,S and C1,2 are obviously NG modes when two vortices are coinci-
dent, namely δ = 0. One can confirm this fact, for example, by considering an infinitesimal
color-flavorG′C+F transformation accompanied by an appropriate V -transformation. There-
fore, any moduli matrix of the form (5.41) can be always brought into the following

H
(
0

r︷︸︸︷
1,··· ,1 ,

M−r︷︸︸︷
0,··· ,0 ) =


(z − z0)21r 0 0 0

0 (z − z0)1M−r + Γ11 0 Γ12

a1;A,S z 0 1r 0
0 Γ21 0 (z − z0)1M−r + Γ22

 .

(C.1)

For δ = 0, the rank 2γ = rank(Γ) is less than 2γ < 2(M − r). The first condition in
Eq. (5.46) states that ΓJ2(M−r) is anti-symmetric (symmetric), so that Γ can be written as

Γ = ε qJ̃2γ q
T J2(M−r) , (C.2)

where q is a 2(M − r)× 2γ matrix whose rank is 2γ, (M − r ≥ γ), and J̃2γ is the invariant
tensor of G̃′2γ = USp(2γ) for G′ = SO(2M) and G̃′2γ = SO(2γ) for G′ = USp(2M).
Then the second condition is translated into the following constraint on q:

A = 0 , A ≡ qTJ2(M−r)q . (C.3)

Note that the rank of A = qTJ2(M−r)q is bounded as

4γ − 2(M − r) ≤ rank(A) ≤ rank(q) = 2γ . (C.4)

Therefore, 2γ ≤ M − r in the present case of rank(A) = 0. This last condition can be
solved by

q = O

(
g

02(M−r−γ)×2γ

)
, g ∈ GL(2γ,C) , O ∈ G′2(M−r) . (C.5)

Thus we find

Γ = O


gJ̃2γg

T

0M−r−2γ

02γ

0M−r−2γ

OTJ2(M−r) . (C.6)
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In the case of G′ = SO(2M), we can bring the anti-symmetric matrix gJ̃2γg
T onto a

block-diagonal form as

gJ̃2γg
T = uΛuT , Λ ≡ iσ2 ⊗ diag(λ11p1 , λ21p2 , · · · , λq1pq) , (λi > λi+1 > 0) ,

(C.7)

where u ∈ U(2γ) and 2
∑q

i=1 pi = 2γ. Thus we have found

Γ = O′


Λ

0M−r−2γ

02γ

0M−r−2γ

O′−1 , (C.8)

O′ ≡ O


u

1M−r−2γ (
uT
)−1

1M−r−2γ

 ∈ SO(2(M − r)) . (C.9)

Similarly, the anti-symmetric tensor a1;,A can be brought onto a diagonal form. Let

rank(a1,A) = 2α ≤ r ,

then we obtain

a1;A =

(
0r−α

u′ Λ′ u′T

)
, Λ′ ≡ iσ2 ⊗ diag(λ′11p′1 , λ

′
21p′2 , · · · , λ′q′1p′q′ ) , (C.10)

where u′ ∈ U(2α), 2
∑q′

i=1 p
′
i = 2α and λ′i > λ′i+1 > 0. Finally, we arrive at the following

expression

H0 =



z21r−2α 0 0 0 0 0 0 0
0 z212α 0 0 0 0 0 0
0 0 z12γ 0 0 0 Λ 0
0 0 0 z1M−r−2γ 0 0 0 0M−r−2γ

0r−2α 0 0 0 1r−2α 0 0 0
0 Λ′ z 0 0 0 12α 0 0
0 0 0 0 0 0 z12γ 0
0 0 0 0 0 0 0 z1M−r−2γ


, (C.11)

where we have turned off the center of mass z0 = 0. One can return to the previous moduli
matrix by using the color-flavor symmetry H0 → U−1H0U with

U ≡



1r−2α

u′T

O′−1

1r−2α

u′−1

O′−1

 ∈ SO(2M) . (C.12)



IX

By making use of the V -transformation, one can bring this onto the following form

V H0 =



z21r−2α 0 0 0 0 0 0 0
0 z212α 0 0 0 0 0 0
0 0 z212γ 0 0 0 0 0
0 0 0 z1M−r−2γ 0 0 0 0

0 0 0 0 1r−2α 0 0 0
0 Λ′ z 0 0 0 12α 0 0
0 0 Λ−1z 0 0 0 12γ 0
0 0 0 0 0 0 0 z1M−r−2γ


,

V =



1r−2α 0 0 0 0 0 0 0
0 12α 0 0 0 0 0 0
0 0 z12γ 0 0 0 −Λ 0
0 0 0 1M−r−2γ 0 0 0 0

0 0 0 0 1r−2α 0 0 0
0 0 0 0 0 12α 0 0
0 0 Λ−1 0 0 0 02γ 0
0 0 0 0 0 0 0 z1M−r−2γ


. (C.13)

where one can check that V ∈ SO(2M,C) because ΛT = −Λ. We can rearrange the
eigenvalues λ̃a = {λ−1

i , λ′j} in such a way that

diag
(
Λ′ , Λ−1

)
= iσ2 ⊗ diag

(
λ̃11p̃1 , · · · , λ̃s1p̃s

)
, λ̃a > λ̃a+1 > 0 , (C.14)

hence the G′C+F = SO(2M) orbit can easily be seen in Eq. (5.70).
The arguments for G′ = USp(2M) are analogous to those of G′ = SO(2M). A small

difference is that J2(M−r)Γ and a1;S are now symmetric. In the end, we obtain the moduli
matrix on the following form

H0 =



z21r−β 0 0 0 0 0
0 z21β+ζ 0 0 0 0
0 0 z1M−r−ζ 0 0 0
0 0 0 1r−β 0 0

0 Λ̃ z 0 0 1β+ζ 0
0 0 0 0 0 z1M−r−ζ

 , (C.15)

Λ̃ = diag(λ̃11p̃1 , · · · , λ̃s1p̃s) , (C.16)

with β = rank(Γ) and ζ = rank(a1;S).





APPENDIX D

Some transition functions for semi-local
vortices

Here we make a collection of some of the transition functions discussed in Chaps. 5 and 6.

D.1 k = 1, G′ = SO(4)

The transition functions between two Z2-parity +1 patches for the minimal semi-local
vortices in G′ = SO(4) theory of Sec. 6.4.1:

a = −f ′i′ + a′+d′

2
,

b = −g′i′ ,
c = e′i′ ,
d = f ′i′ + a′+d′

2
,

e = −c′i′ ,
f = (a′−d′)i′

2
,

g = b′i′ ,
i = − 1

i′
.

(D.1)
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D.2 k = 2, G′ = SO(4), QZ2 = +1

The transition functions between H(0,0)
0 and H(1,1)

0 for the k = 2 semi-local vortices in
G′ = SO(4) theory of Sec. 6.5.1:

a0 = 1
2
a′1 − 1

2
d′1 +

i′0
i′1
,

b0 = b′1 ,
c0 = e′1 ,
d0 = f ′1 − 1

i′1
,

e0 = c′1 ,
f0 = −1

2
a′1 + 1

2
d′1 +

i′0
i′1
,

g0 = f ′1 + 1
i′1
,

h0 = g′1 ,
i0 = −c′1i′0 − c′0i′1 + 1

2
a′1c
′
1i
′
1 + 1

2
c′1d
′
1i
′
1 ,

j0 = a′1i
′
0 − i

′2
0

i′1
− 1

4
a
′2
1 i
′
1 − d′0i′1 + 1

4
d
′2
1 i
′
1 ,

k0 = 1
2
a′1 + 1

2
d′1 − f ′1i′0 − f ′0i′1 − i′0

i′1
+ 1

2
a′1f

′
1i
′
1 + 1

2
d′1f

′
1i
′
1 ,

l0 = −g′1i′0 − g′0i′1 + 1
2
a′1g
′
1i
′
1 + 1

2
d′1g
′
1i
′
1 ,

m0 = −d′1i′0 + a′0i
′
1 +

i
′2
0

i′1
− 1

4
a
′2
1 i
′
1 + 1

4
d
′2
1 i
′
1 ,

n0 = b′1i
′
0 + b′0i

′
1 − 1

2
a′1b
′
1i
′
1 − 1

2
d′1b
′
1i
′
1 ,

o0 = e′1i
′
0 + e′0i

′
1 − 1

2
a′1e
′
1i
′
1 − 1

2
d′1e
′
1i
′
1 ,

p0 = 1
2
a′1 + 1

2
d′1 + f ′1i

′
0 + f ′0i

′
1 − i′0

i′1
− 1

2
a′1f

′
1i
′
1 − 1

2
d′1f

′
1i
′
1 .

(D.2)

These transition functions are, of course, invertible.
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D.3 k = 2, G′ = SO(4), QZ2 = −1

The transition functions between the patches with Z2-parity −1, viz. H(1,0)
0 and H(−1,0)

0 ,
for the k = 2 semi-local vortices in G′ = SO(4) theory discussed in Sec. 6.5.1, are

a1 = −c′1e′1i′1 − e′0
e′1
− i′0

i′1
,

a0 = −c′0e′1i′1 +
e′0i
′
0

e′1i
′
1
,

b1 = −b′1e′1i′1 − f ′0i′1 − e′1j′0 +
e′0i
′
1

e′1
,

b0 = −b′0e′1i′1 − f ′0i′0 − e′0j′0 +
e′0i
′
0

e′1
,

c1 = −a′1e′1i′1 − e′0i′1 − e′1i′0 ,
c0 = −a′0e′1i′1 + e′0i

′
0 ,

d1 = −d′1e′1i′1 − g′0i′1 − e′1k′0 − e′1i
′
0

i′1
,

d0 = −d′0e′1i′1 + g′0i
′
0 + e′0k

′
0 − e′0i

′
0

i′1
e1 = − 1

i′1
,

e0 = − i′0
i
′2
1

,

f0 = − i′0
i′1
− e′1j

′
0

i′1
,

g0 = − e′1k
′
0

i′1
− e′1i

′
0

i
′2
1

,

i1 = − 1
e′1
,

i0 = − e′0
e
′2
1

,

j0 = − i′1f
′
0

e′1
− i′1e

′
0

e
′2
1

,

k0 = −g′0i
′
1

e′1
− e′0

e′1
.

(D.3)

D.4 k = 1, G′ = SO(3)

The transition functions between the patches (−1) and (1) for the k = 1 semi-local
vortices in G′ = SO(3) theory discussed in Sec. 6.6.1, are



d = − 2
d′
,

e = − 2e′

d′2
,

z3 = −2e′

d′
− z′3 ,

f = d′e′ − 1
2
d′2z′1 ,

a = 1
2

(
e′2 − d′2z′2

)
,

b = −1
2
b′d′2 − e′ − d′z′3 ,

c = −1
2
c′d′2 − e′ ( e′

d′
+ z′3

)
,

z1 = 2e′

d′
− 1

2
d′2f ′ ,

z2 = e′2

d′2
− 1

2
a′d′2 .

(D.4)
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D.5 k = 1, G′ = SO(5), QZ2 = +1

The transition functions between the patches (1, 1) and (0, 0) for the k = 1 semi-local
vortices in G′ = SO(5) theory discussed in Sec. 6.6.2, are

a′1 = a1−a4

2
+ f

e
+ i1i2

2e
,

a′2 = a2 +
i22
2e
,

a′3 = c1 ,
a′4 = −1

e
+ c2 ,

a′5 = g1 − i2
e
,

b′1 = a3 − i21
2e
,

b′2 = −a1−a4

2
+ f

e
− i1i2

2e
,

b′3 = 1
e

+ c2 ,
b′4 = c3 ,
b′5 = g2 + i1

e
,

c′1 = −eb3 + ea3(a1+a4)
2

− a3f − i1(a1i1+a3i2)
2

− i1j1 ,

c′2 = −eb4 − e(a2
1−a2

4)
4

+ a1f − f2

e
− i1(a2i1+a4i2)

2
− i1j2 ,

c′3 = −ed2 + c2e(a1+a4)
2

+ a1+a4

2
− f

e
− c2f − i1(c1i1+c2i2)

2
− i1i2

2e
,

c′4 = −ed3 + c3e(a1+a4)
2

− c3f +
i21
2e
− i1(c2i1+c3i2)

2
,

c′5 = −eh2 + g2e(a1+a4)
2

− fg2 + i1(a1+a4)
2

− fi1
e
− i1(g1i1+g2i2)

2
− i1y ,

d′1 = eb1 − e(a2
1−a2

4)
4

− a4f + f2

e
− i2(a1i1+a3i2)

2
− i2j1 ,

d′2 = eb2 − a2e(a1+a4)
2

+ a2f − i2(a2i1+a4i2)
2

− i2j2 ,

d′3 = ed1 − c1e(a1+a4)
2

+ c1f − i2(c1i1+c2i2)
2

− i22
2e
,

d′4 = ed2 − c2e(a1+a4)
2

+ a1+a4

2
− f

e
+ c2f − i2(c2i1+c3i2)

2
+ i1i2

2e
,

d′5 = eh1 − g1e(a1+a4)
2

+ fg1 + i2(a1+a4)
2

− fi2
e
− i2(g1i1+g2i2)

2
− i2y ,

e′1 = j1 + i1(a1−a4)
2

+ fi1
e

+ a3i2 ,

e′2 = j2 − i2(a1−a4)
2

+ fi2
e

+ a2i1 ,
e′3 = c1i1 + c2i2 + i2

e
,

e′4 = c2i1 + c3i2 − i1
e
,

e′5 = y + g1i1 + g2i2 ,

(D.5)



D.6 k = 1, G′ = SO(5), QZ2 = −1 XV

D.6 k = 1, G′ = SO(5), QZ2 = −1

The transition functions between the patches (−1, 0) and (1, 0) for the k = 1 semi-local
vortices in G′ = SO(5) theory discussed in Sec. 6.6.2, are

a0 =
2f ′0f

′
1+h′20
Ξ

− 1
2
b′0Ξ ,

a1 = −2(e′0f ′0+e′1f
′
1+h′0j

′
1)

Ξ
− 1

2
b′1Ξ ,

b0 = f ′0f
′
1 + 1

2
h′20 − 1

2
a′0Ξ ,

b1 = −e′0f ′0 − e′1f ′1 − h′0j′1 − 1
2
a′1Ξ ,

c0 = f ′1g
′
0 + f ′0g

′
2 + h′0h

′
1 +

e′0(2f ′0f
′
1+h′20)

Ξ
− 1

2
c′0Ξ ,

c1 = f ′1 − e′0g′0 − e′1g′2 − h′1j′1 −
2e′0(e′0f ′0+e′1f

′
1+h′0j

′
1)

Ξ
− 1

2
c′1Ξ ,

d0 = f ′1g
′
1 + f ′0g

′
3 + h′0h

′
2 +

e′1(2f ′0f
′
1+h′20)

Ξ
− 1

2
d′0Ξ ,

d1 = f ′0 − e′0g′1 − e′1g′3 − h′2j′1 −
2e′1(e′0f ′0+e′1f

′
1+h′0j

′
1)

Ξ
− 1

2
d′1Ξ ,

e0 = −2e′0
Ξ
,

e1 = −2e′1
Ξ
,

f0 =
−4e

′2
1 f
′
1−4e′1h

′
0j
′
1+2f ′0j

′2
1

Ξ2 ,

f1 =
−4e

′2
0 f
′
0−4e′0h

′
0j
′
1+2f ′1j

′2
1

Ξ2 ,

g0 = g′0 −
2e′1(e′0g′0+e′1g

′
2+h′1j

′
1)

Ξ
+

2e′0

“
−2e

′2
1 f
′
1−2e′1h

′
0j
′
1+f ′0j

′2
1

”
Ξ2 ,

g1 =
4e
′3
1 (f ′1+e′0g

′
3)+g′1j

′4
1 −2e

′2
1 j
′
1(2h′0+2e′0h

′
2+g′3j

′
1)+2e′1j

′2
1 (f ′0+e′0g

′
1−h′2j′1)

Ξ2 ,

g2 =
−4e

′3
0 (f ′0+e′1g

′
0)+g′2j

′4
1 −2e

′2
0 j
′
1(2h′0+2e′1h

′
1+g′0j

′
1)+2e′0j

′2
1 (f ′1+e′1g

′
2−h′1j′1)

Ξ2 ,

g3 = g′3 −
4e′0e

′
1(e′0f ′0+e′1f

′
1+h′0j

′
1)

Ξ2 − 2
“
−e′1f ′1+e

′2
0 g
′
1+e′0e

′
1g
′
3+e′0h

′
2j
′
1

”
Ξ

,

h0 =
−4e′0e

′
1h
′
0+4e′0f

′
0j
′
1+4e′1f

′
1j
′
1+2h′0j

′2
1

Ξ2 ,

h1 =
4e
′2
0 (−e′1(h′0+e′1h

′
1)+(f ′0+e′1g

′
0)j′1)+j

′3
1 (2e′1g

′
2+h′1j

′
1)+2e′0j

′
1(2e′1(f ′1+e′1g

′
2)+j′1(h′0+g′0j

′
1))

Ξ2 ,

h2 =
−4e′0e

′2
1 (h′0+e′0h

′
2)+4e′1(e′1f ′1+e′0(f ′0+e′0g

′
1+e′1g

′
3))j′1+2e′1h

′
0j
′2
1 +2(e′0g′1+e′1g

′
3)j
′3
1 +h′2j

′4
1

Ξ2 ,

i0 =
2e
′2
0 e
′2
1 i
′
0−2e′0e

′
1

“
f ′1j
′
0−i′0j

′2
1 +f ′0j

′
2+h′0k

′
”

+j′1

“
−f ′1j′0j′1+ 1

2
i′0j
′3
1 −f ′0(2f ′1+j′1j

′
2)−h′0(h′0+j′1k

′)
”

Ξ
,

i1 =
2e
′2
0 e
′
1(e′1i′1+j′0)+j′1

“
2e′1f

′
1+h′0j

′
1+ 1

2
i′1j
′3
1 +e′1j

′
1j
′
2+j

′2
1 k
′
”

Ξ

+
e′0

“
j′1(2f ′0+j′0j

′
1)+2e

′2
1 j
′
2+2e′1(−h′0+j′1(i′1j′1+k′))

”
Ξ

,

j0 =
−j′31 (2f ′0+j′0j

′
1)+4e′0e

′3
1 j
′
2+2e

′2
1 j
′
1(2f ′1+j′1j

′
2+2e′0k

′)+2e′1j
′2
1 (2h′0−e′0j′0+j′1k

′)
Ξ2 ,

j1 =
2j′1
Ξ
,

j2 =
4e
′3
0 e
′
1j
′
0−j

′3
1 (2f ′1+j′1j

′
2)+2e

′2
0 j
′
1(2f ′0+j′0j

′
1+2e′1k

′)+2e′0j
′2
1 (2h′0−e′1j′2+j′1k

′)
Ξ2 ,

k =
−2e′0j

′
1

“
−2e′1h

′
0+j′1(2f ′0+j′0j

′
1)+2e

′2
1 j
′
2

”
+4e

′2
0 e
′
1(−j′0j′1+e′1k

′)−j′21
“

4e′1f
′
1+2h′0j

′
1+2e′1j

′
1j
′
2+j

′2
1 k
′
”

Ξ2 .

(D.6)





APPENDIX E

SO(2M), USp(2M) groups and their
invariant tensors

Let us define the following sets of n-by-n matrices for ε = ±1

Invε(n) ≡ {J | JT = εJ , J†J = 1n} . (E.1)

That is, elements of Invε(n) are (anti)symmetric and unitary.
Proposition: For an arbitrary A ∈ Inv+(2), there exists a 2-by-2 unitary matrix u such that

A = uTu . (E.2)

Proof: A general solution of A is given by

A = eiλ
(
eiρ cos θ i sin θ
i sin θ e−iρ cos θ

)
= e

i
2

(λ12+ρ σ3) (cos θ12 + iσ1 sin θ) e
i
2

(λ12+ρ σ3) = uTu , (E.3)

with u = e
i
2
θσ1e

i
2

(λ12+ρ σ3) ∈ U(2). �

Theorem 1-s: An arbitrary A ∈ Inv+(n) can be written as

A = uTu , (E.4)

with an n-by-n unitary matrix u. �

Therefore we find,

Inv+(n) ' U(n)/O(n) . (E.5)

Proof 1-s: It is easy to show that an arbitrary symmetric matrix can be rewritten as

A → A′ = u′Au′T =


|a1| b1 0 0 · · ·
b1 |a2| b2 0 · · ·
0 b2

. . . . . .

0 0
. . .

...
...

 ∈ Inv+(n) , (E.6)
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with an unitary matrix u′. The matrix A′ is also a unitary matrix and this fact leads to b1 = 0
or b2 = 0. Therefore

A′ =
(

1 0
0 A(n−1)

)
, or

(
A(2) 0
0 A(n−2)

)
, (E.7)

where A(m) ∈ Inv+(m). Recursively, we find A′ takes a block-diagonal form whose diag-
onal elements are 1 or 2-by-2 symmetric unitary matrices. By using Proposition (E.2), we
can show that there exists a unitary matrix ũ such that ũAũT = 1n, that is, there exists a
unitary matrix u such that A = uTu. �

By using a similar algorithm, we can show that
Theorem 1-a: An arbitrary A ∈ Inv−(2m) can be rewritten as

A = uTJ−mu, J−m =

(
0 1
−1 0

)
⊗ 1m , (E.8)

with an appropriate unitary matrix, u, (uu† = 12m). �

Therefore we find

Inv−(2m) ' U(2m)/USp(2m) . (E.9)

A choice of Jε ∈ Invε(n) defines a subgroup Gε(Jε) of U(n) as

Gε(Jε) =
{
g ∈ U(n)

∣∣ gTJg = J
}
. (E.10)

Conversely, we can say that Jε is an invariant tensor of Gε(Jε).
Corollary 1: Two arbitrary elements J, J ′ ∈ Invε(n) are related to each other with an
appropriate unitary matrix u as, J ′ = u J uT thus the corresponding groups Gε(J) and
Gε(J

′) are isomorphic to each other. �

Therefore, from Eq. (E.4) and Eq. (E.8) we find that G+(J+) is isomorphic to O(n) and
G−(J−) is isomorphic to USp(n = 2m).

E.1 Diagonalization of the vacuum configuration
Theorem 2-s: Let us consider an arbitrary n-by-m (n ≤ m) matrix Q satisfying

QQ† = (QQ†)T . (E.11)

Then Q can always be decomposed as

Q = O

 λ1 0 · · · 0
. . . ... . . . ...

λn 0 · · · 0

U , (E.12)

where O ∈ SO(n) with J = 1n and U ∈ U(m).
Proof 2-s: Since QQ† is symmetric and Hermitian, QQ† is a real symmetric matrix. There-
fore it can be diagonalized as QQ† = OΛ2OT with Λ = diag(λ1, λ2, · · · , λn) with λi ∈
R≥0. �
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Theorem 2-a: Let us consider an arbitrary 2n-by-m (2n ≤ m) matrix Q satisfying

JQQ† = (QQ†)TJ , (E.13)

with J = iσ2 ⊗ 1n. Then Q can always be decomposed as

Q = O

 0 · · · 0

Λ
... . . . ...
0 · · · 0

U , (E.14)

where O ∈ USp(2n) and U ∈ U(m) and Λ = 12 ⊗ diag(λ1, λ2, · · · , λn) with λi ∈ R≥0. �

Proof 2-a: The Hermitian positive semi-definite matrix QQ† is always diagonalized as
QQ† = uΛ2u† with an appropriate unitary matrix u ∈ U(2n). Then the condition tells
us that X = uTJu commutes with Λ2, [X,Λ2] = 0. We can set Λ to be positive semi-
definite, then [X,Λ] = 0. Furthermore, we find XX† = 12n and XT = −X . According
to Theorem 1-a, thus, X turns out to be X = uTJu = J by taking an appropriate u. This
means u is an element of USp(2n). Here Λ takes a form 12 ⊗ Λ′, since [Λ, J ] = 0. �

E.2 Diagonalization of a non-Hermitian (anti)symmetric
matrix

Theorem 3: An arbitrary n-by-n (anti)symmetric matrix M, (that is, MT = εM ) can be
written in a block-diagonal form as

M = u

 |µ(1)|J(1)

|µ(2)|J(2)

. . .

uT , (E.15)

where J(k) ∈ Invε(nk) and n =
∑

k nk. �

Proof 3: MM † is an Hermitian matrix and thus, can always be diagonalized as

MM † = u diag
(|µ(1)|21n1 , |µ(2)|21n2 , · · ·

)
u† , (E.16)

with a unitary matrix u and |µ(i)| < |µ(i+1)|. Therefore, M̃ ≡ u†Mu∗ satisfies

M̃M̃ † = diag
(|µ(1)|21n1 , |µ(2)|21n2 , · · ·

)
= (M̃M̃ †)T = M̃ †M̃ . (E.17)

Note that M̃T = εM̃ . This equation means that M̃ is a normal matrix [M̃, M̃ †] = 0 and can
be diagonalized as

M̃ = ũ diag (µ1, µ2, · · · ) ũ† , (E.18)

with a unitary matrix ũ. By substituting this form into Eq.(E.17), we find that

|µ(1)|2 = |µ1|2 = |µ2|2 = · · · , |µ(2)|2 = |µn1+1|2 = · · · , |µ(3)|2 = · · · . (E.19)
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and ũ should take a block-diagonal form as

ũ = diag(u(1), u(2), · · · ) , (E.20)

where u(k) is an nk-by-nk unitary matrix. Therefore, M̃ also takes block-diagonal form as

M̃ = diag
(|µ(1)|J(1), |µ(2)|J(2), · · ·

)
. (E.21)

�

The meson field is always ’diagonalized’ by fixing the flavor symmetry. Combining Theo-
rem 1-s(1-a) with Theorem 3, we find the following corollaries.
Corollary 3-s: An arbitrary symmetric matrix M can be diagonalized

M = umuT, m = diag(|µ1|, |µ2|, · · · ) , (E.22)

with a unitary matrix u. �

Corollary 3-a: An arbitrary anti-symmetric matrix M can be diagonalized

M = umuT, m =

(
0 1
−1 0

)
⊗ diag(|µ1|, |µ2|, · · · ) , (E.23)

with a unitary matrix u. �

Corollary 3’: An arbitrary n-by-n (anti-)symmetric matrix M can be decomposed as

M = QTJQ . (E.24)

where Q is an n-by-m matrix and J ∈ Invε(m) with m = rank(M). �

The (anti)symmetric matrix M breaks the U(n) symmetry M → uMuT as

U(n) →
{

U(n0)×O(n1)×O(n2)× · · ·
U(n0)× USp(2m1)× USp(2m2)× · · · , (E.25)

where n0 is the number of zero-eigenvalues of M .
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Non-trivial uniqueness proof

In this section, we prove the uniqueness of the solution to Eq. (8.19). Here we consider
the SO(N) case. We can always write the N -by-NF matrix Q as

Q =
(
Q̂, 0

)
U , U ∈ U(NF) , (F.1)

up to U(N) transformations which rotates the columns of the N -by-N matrix of Q̂. We can
show that for M̂ ≡ Q̂TJQ̂

rank M̂ = N ⇔ rank Q̂ = N ,

rank M̂ = N − 1 ⇒ rank Q̂ = N − 1 , (F.2)

since det M̂ = det J(det Q̂)2 and N ≥ rank Q̂ ≥ rank M̂ is always satisfied.

F.1 Solution with rankM = N

If the rank of M ≡ QTJQ is N , then M̂ also has rank N . Therefore rank Q̂ = N ,
namely Q̂ is invertible and

UQ ≡ Q̂−1

√
Q̂Q̂† , (F.3)

is a unitary matrix, UQ ∈ U(N). In terms of this unitary matrix, we rewrite Eq.(8.19) as

X =
√
QQ†e−V

′√
QQ† = U †QQ̂

†e−V
′
Q̂UQ ,

X2 =
(
QTJ

√
QQ†

)†
QTJ

√
QQ† = U †QQ̂

†J†Q∗QTJQ̂UQ = U †QM̂
†M̂UQ . (F.4)

Since Q̂ and M̂ are invertible, we find a unique solution of V ′

V ′ = log

(
Q̂

1N√
M̂ †M̂

Q̂†
)
. (F.5)
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F.2 Solution with rankM = N − 1

In this case rank Q̂ = N − 1, we can use the U(N) rotation so that the N -by-N matrix
Q̂ takes the form

Q̂ =

 0

Q̃
...
0

 , (F.6)

where Q̃ is an N -by-(N − 1) matrix. We can introduce an N -component vector p such that

pTJQ̂ = pTJQ = 0 , pTJp = 1 , (F.7)

and the following N -by-N matrix has the maximal rank

R ≡
(
Q̃, p

)
∈ GL(N,C) . (F.8)

Note that with a given Q̃, the column vector p is uniquely determined up to a sign. Since R
is invertible, eV ′ can be decomposed as

eV
′
= R

(
B c
c† a

)
R† . (F.9)

Here, B is an (N − 1)-by-(N − 1) Hermitian matrix and a is a real parameter. Eq. (8.18)
can be rewritten as

eV
′T
JQQ† = Q∗QTJeV

′
. (F.10)

Substituting the above decomposition and multiplying by RTJ∗ from the left and by J†R∗

from the right, we find that

BTM̂ = M̂B, c = 0 . (F.11)

From the condition for eV ′ ∈ SO(N)C, we find the following equations

a2 = 1, M̂ †BTM̂B = 1N−1 . (F.12)

Note that we can say that B and a are positive definite since c = 0. Combining the above
two equations, we obtain

B =
1N−1√
M̂ †M̂

, a = 1 . (F.13)

Therefore we finally find a unique solution

eV
′
= Q̃

1N−1√
M̂ †M̂

Q̃† + pp† . (F.14)

Note that pp† is uniquely determined for a given Q̃, namely for a given Q. Even if we could
construct a similar solution for V ′ in the case of rankM < N − 1, it is obviously expected
that a matrix corresponding to pp† would not be unique. These results exactly reflect the
appearance of a partial Coulomb phase in the case of rankM < N − 1.
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Deformed Kähler potential for USp(2M)

The expansion of the deformed Kähler potential of Eq. (8.39) reads

KUSp,deformed =

1

2

∑
i,j

1

µ′i + µ′j

[
1 +

ε2

µ′iµ
′
j

]
φijφ

†
ji

− 1

2

∑
i,j,k

µi
(µ′i + µ′j)(µ

′
i + µ′k)(µ

′
j + µ′k)

[
1 + ε2

µ′i + µ′j + µ′k
µ′iµ

′
jµ
′
k

]
φijφ

†
jk(φJ

†)ki + c.c.

+
∑
i,j,k,l

X(ε)ijkl(φJ
†)ij(φJ†)jkφklφ

†
li + c.c.

+
1

2

∑
i,j,k,l

µjµl
P ′ijkl

[
C

(1)′

ijkl + ε2
C

(1)′

ijklC
(2)′

ijkl − C(3)′

ijkl

C
(4)′

ijkl

]
(φJ†)ijφjkφ

†
kl(Jφ

†)li

− 1

4

∑
i,j,k,l

[
C

(3)′

ijkl

P ′ijkl
+ 2ε2

C
(1)′

ijkl

P ′ijkl
+ ε4

C
(1)′

ijklC
(2)′

ijkl − C(3)′

ijkl

C
(4)′

ijklP
′
ijkl

]
φijφ

†
jkφklφ

†
li

+ Kähler trfs. +O(φ5) , (G.1)

where µ′2i ≡ µ2
i + ε2.
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The resulting curvature is

R|φ=0 = − 2
M∑
i

µ
′6
i + ε27µ

′4
i − ε417µ

′2
i − ε67

2µ′i(ε2 + µ
′2
i )3

(G.2)

− 2
M∑
i,j

µ
′4
i µ
′4
j

(µ′i + µ′j)(ε2 + µ
′2
i )(ε2 + µ

′2
j )(ε2 + µ′iµ

′
j)

2

+ 2ε2

M∑
i,j

µ
′2
i µ
′2
j (µ

′2
i + µ

′2
j )

(µ′i + µ′j)(ε2 + µ
′2
i )(ε2 + µ

′2
j )(ε2 + µ′iµ

′
j)

2

− 4ε4

M∑
i,j

µ
′2
i

(
6µ
′2
i + 9µ′iµ

′
j + 5µ

′2
j

)
(µ′i + µ′j)(ε2 + µ

′2
i )(ε2 + µ

′2
j )(ε2 + µ′iµ

′
j)

2

− 4ε6

M∑
i,j

µ′i
(
5µ
′2
i + 15µ′iµ

′
j + 13µ

′2
j

)
µ′j(µ

′
i + µ′j)(ε2 + µ

′2
i )(ε2 + µ

′2
j )(ε2 + µ′iµ

′
j)

2

− 2ε8

M∑
i,j

10µ′i + 13µ′j
µ′j(µ

′
i + µ′j)(ε2 + µ

′2
i )(ε2 + µ

′2
j )(ε2 + µ′iµ

′
j)

2

+ 16
M∑
i,j,k

µ
′3
i µ
′2
j µ
′3
k

(µ′i + µ′j)(µ
′
i + µ′k)(µ

′
j + µ′k)(ε2 + µ′iµ

′
j)(ε

2 + µ′iµ
′
k)(ε

2 + µ′jµ
′
k)

+ 16ε2

M∑
i,j,k

µ
′2
i µ
′2
j µ
′2
k

(µ′i + µ′j)(µ
′
i + µ′k)(µ

′
j + µ′k)(ε2 + µ′iµ

′
j)(ε

2 + µ′iµ
′
k)(ε

2 + µ′jµ
′
k)

+ 16ε4

M∑
i,j,k

µ′iµ
′
k

(
4µ
′2
i µ
′
j + 2µ

′2
i µ
′
k + 6µ′iµ

′2
j + 3µ

′3
j + 4µ′iµ

′
jµ
′
k

)
µ′j(µ

′
i + µ′j)(µ

′
i + µ′k)(µ

′
j + µ′k)(ε2 + µ′iµ

′
j)(ε

2 + µ′iµ
′
k)(ε

2 + µ′jµ
′
k)

+ 16ε6

M∑
i,j,k

µ
′2
i (µ′j + µ′k) + µ′j(µ

′
j + µ′k)

2 + µ′i(2µ
′2
j + 2µ′jµ

′
k + µ

′2
k )

µ′j(µ
′
i + µ′j)(µ

′
i + µ′k)(µ

′
j + µ′k)(ε2 + µ′iµ

′
j)(ε

2 + µ′iµ
′
k)(ε

2 + µ′jµ
′
k)
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