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Abstract

In this master thesis we consider the problems of beyondatdmodel physics, espe-
cially the electroweak symmetry breaking and the natusslpeoblem of the standard
model. We motivate that experiments (e.g. the LHC) will firuphysics if unitarity
in the partial wave amplitudes &7 W scattering holds. We then consider technicolor
models and in depth the case of the techniquarks transfgromider higher dimen-
sional representations of the gauge group, in particuatio-index symmetric repre-
sentation ofSU(2). Effective theories are constructed and signatures arsicemed.
Next considerations on cosmological implications for thedel is made and a dark
matter candidate, which is a technibaryon and a Goldstoserbwith a conserved
(techni)baryon number, is expected to contribute a relimdance. By applying earth
based direct search limits we are able to tell what percentédark matter the candi-
date can constitute. Finally the topic unification is coeséd and it is found that the
model in question unifies far better than the standard moeles@. We conclude by
suggesting future directions.



Resune

| dette speciale kigger vi pa problemerne i udvidelserrg@idard modellen, specielt
det elektrosvage symmetribrud og naturlighedsproblemstatidard modellen. Vi mo-
tiverer, at hvis unitaritet i delvise bglge amplitudé#iVV stad holder, sa vil eksperi-
menter (fx. LHC) finde ny fysik. Vi undersgger technicoloraeder og tilfeeldet, hvor
techniquarkene transformerer under hgjere dimensiorgeasentationer af gauge
gruppen, specielt den to-index symmetriske repreesentafiSU (2), i dybden. Ef-
fektive teorier bliver konstrueret og signaturer bliveidensggt. Derefter undersgges
implikationerne af mgrkt stof for modellen og en mgrk stoh#@at, som er en tech-
nibaryon og samtidig en Goldstone boson med et bevaretr(etryon nummer,
konstrueres og vi forventer at den bidrager til det oprilggebverskud. Ved at an-
vende greenser fra jordbaserede direkte undersggelsesekspter er vi i stand til at
forudsige hvad procentdelen af det mgrke stof, som voredi#anpartikel vil udggre,
ville veere. Endeligt bliver emnébrening af gauge kraeftamdersggt og vi finder ud af
at modellen forener sine kraefter langt bedre end standadiea alene. Vi afslutter
derefter ved at forsla hvad de fremtidige emner kunne veere.
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CHAPTER 1

Introduction

The Standard Model (SM) that up to now successfully dessnibest of all exper-
iments in high energy particle physics to great precisiog.(eEPII at CERN) is the
following gauge theory

SU(?))C X SU(Z)L X U(].)Y s (11)

which is the direct product of the gauge groups of the colacdpthe weak force and
the hypercharge, respectively.
Phenomenologically it is known that the low energy gaugeragtny is just

SU3)e x U(L)em (1.2)

where only the strong force and electromagnetism are preSera symmetry breaking
has to occur at some energy scale (the electroweak A¢gle- 246 GeV).

In the SM the Higgs mechanism is used to spontaneously bheaklectroweak
symmetry down to that of electromagnetism and at the saneegiiovide mass terms
for the fermions through Yukawa couplings to the neutralgsi§ield. An introduction
to the Higgs mechanism can be found in many places in thadites, e.g. in Peskin
and Schroeder [9] and in Ref. [10].

First we will motivate the study of the electroweak symmédirgaking by general
arguments that model independently states, why we can etgpgain knowledge on
this field by imminent experiments such as the Large Hadrdhdeo(LHC) at CERN
and the International Linear Collider (ILC). Then we will th@te why the SM is
theoretically unsatisfactory and how this leads to e.gant@olor. This includes the
naturalness problem and the triviality problem, which w# @iplain shortly.

In the next chapter we will briefly introduce technicolor atsdextension, extended
technicolor (ETC) and then explain, what are the problentk thie traditional QCD-
like technicolor and finally how we can resolve some of thebfgms via higher di-
mensional representations of the technicolor gauge ghepwill then make effective
theories of the technicolor model which will be, in a phenowlegical sense, the most
attractive (in the class we will consider) and these eféectheories can then be used
for computations at low energy. Then we will compute the aeisged Feynman rules
for the linearly realized effective theory.

In Chapter 3, we will first make a brief introduction to darktteaand then make
the calculation of the relic density of a specific dark mati@ndidate from the tech-
nicolor model we investigate in depth. Using that we haversseoved technibaryon
number and that the particle is only weakly interactingetber with the experimental
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limits from earth based dark matter search experimentsaweredict what is the relic
abundance, in percent of the measured dark matter densityylaat is the mass of our
particle.

In Chapter 4, we consider the interesting topic of unificatbthe SM gauge forces
and investigate what is the impact of the new technicologgdarce on the SM gauge
forces.

In Chapter 5, we briefly mention the ongoing research in cdimgenodels in
technicolor theories, but also refer to the literature fibreo types of models, e.g. su-
persymmetric models and little Higgs models.

Finally, we conclude by a summary and present an outlook &revto go next.

1.1 Electroweak Symmetry Breaking

It is possible to estimate at what scalew physicéas to set in, using unitarity. In
the literature there are several ways to do this.

One way to go is to use the equivalence theorem [11, 12, 13}ohds it says that
the Higgs mechanism transmutes the Goldstone bosons, gdraoin the electroweak
symmetry breakingqU (2);, x U(l)y — U(1).m), Which we here will denote by
II* andII?, into the longitudinal gauge boson modelyézt andZ;.! This is seen by
performing a gauge transformation into the unitary gaugeeduations it relates the
physical S-matrix amplitudes involvinlg‘;fLi andZ;, to amplitudes witHI* andII®

My

M (Wi (1), Wi (p2), ) = M (T (p1), T (p2), .. o+ O ( b

) , (1.3)
whereF is the center-of-mass energy and the right-hand-side ¢fttee above equa-
tionis in the generalizef; gauge and does in general depend orgthauge parameter
to orderMy /E.

Analogously to the pion scattering low-energy theoremsentit is known that

M(rtn~ — 7%7°) = % , (1.4)

it can be shown by a method similar to the current-algebrivatéon of the pion am-

plitude that [14]
S

M — 1°1°%) = —— (1.5)
pvweak
where )
MW
e | — 1.6
P MZ cos? 0, (1.6)

is equal to one in the minimal Higgs model and is preservectatlevel, if the “Higgs
sector” has custodial symmetry (where it is understoodhlyatliggs sector is meant
whatever theory is underlying/replacing the Higgs mecsaii Using Eq. (1.3) yields

_ S
MWW, — Zp71) = e (1.7)

weak

By considering the partial-wave projection= 0 of the amplitude (1.7) one finds

s sGr

- = 1.8
167rv\?veak 8\/§7T ’ ( )

‘CLQ(WZ_WL_ — ZLZL)‘

1The indexL denotes the longitudinal mode
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Wi,
Wi
Wy

- -
>

Figure 1.1: Diagram of’; W, scattering (fusion) which is an interesting prob&efv
physics at the electroweak scale.

whereGF is the Fermi constant. By the condition of partial-wave ariiy
las(s)] <1, (1.9)
the scale for which unitarity is violated, is

827
Gr

Aip < ~ (1.7TeV)? . (1.10)

A more careful analysis has been performed in the literdbyreee, Quigg, and
Thacker [15, 16] where partial-wave unitarity in the folraonel system, consisting of
Wiw,, %ZLZL, %HH, andH Z;,, has to be obeyed. The result is

827
Aip <

< 3g. © (1.0TeV)? . (1.11)

Itis interesting to note, that information about the symmpbteaking sector is to be
found by considerindl’;, W -scattering (see Fig. 1.1) because the longitudinal modes
of the gauge bosons are exactly part of the new physics whigdkb the electroweak
symmetry.

It is quite motivating, that the symmetry breaking mechanézan be probed with
collider machines, such as the LHC and the ILC which can réaefeV scale.

1.2 The Naturalness Problem

The hierarchy problem can be stated as the theoretical nyytb there are seven-
teen orders of magnitudes between the electroweak gcaleand the Planck scale
Aplanck- This is no problem in the SM per se. The problem comes in \@antktural-
ness of the Higgs boson.

There are various ways to define the naturalness probleme Htart by taking a
look at the SM Higgs boson, its mass will acquire quantumemsiions

om3 o< A? (1.12)

whereA is the cut-off scale to which the theory is valid. Insistimgtthe SM holds
until some large scale, e.g. some Grand Unified (GUT) Sdaler or the Planck
scaleApianck, the correction of the mass is unnaturally large compareheanass of
the Higgs boson and the electroweak scale.



4 Introduction

The fact that the Higgs boson is a fundamental scalar leadlsabthere is no sym-
metry to “protect” the mass from thesalditive corrections. Setting the bare Higgs
boson mass to zero will not eliminate the large correctianis is the case witmulti-
plicative corrections. Taking e.g. quantum electrodynamics (QBE®) efectron mass
is protected by the chiral symmetry/ (1), x U(1)g) which will forbid the non-zero
corrections. Such a symmetry is called a “custodial symytetr

It is interesting to note, that quantum chromodynamics (QiSMatural per se, as
the scaleAqcp is an intrinsic scale and the chiral symmetry of the fermiaots as
custodial symmetry.

There are in general (at least) three exceptions where tipgsttioson is protected.

1 Composite scalars which first forms when the theory becatnesgly coupled
and thus only would receive corrections of order of thatescal

2 Goldstone bosons which can have low masses due to the spootabroken
chiral symmetry.

3 Supersymmetric scalars have fermionic partners thatrategied by chiral sym-
metry. They are thus protected via their partners. Anotlesr io see this natu-
ralness is by computing the corrections for the Higgs bosatfar its fermionic
partner, the higgsino. One then finds, that the quadratiections cancel out
and only logarithmic corrections are left. This is, howewaly true in the case
of unbroken supersymmetry which is not observed at low gndrige so-called
soft breaking of supersymmetry is then required to be of tigeroof the elec-
troweak scale in order to retain the naturalnéss.

Models of type 2 (from above) are e.g. the Little Higgs mod&8apersymmetric
theories e.g. the minimal supersymmetric standard mod&3M) are examples of
type 3. Technicolor belongs to the solution of type 1 and balfurther motivated in
the next chapter.

The theories not of technicolor type will briefly be discusempared with tech-
nicolor in chapter 5.

1.3 Triviality

Another problem with the elementary Higgs boson is that teehistrivial [18,
19, 20]. The Higgs self-coupling(:) of the minimal one-doublet Higgs boson model
(i.e. used in the SM) at the energyis

)\(/14) ~ )\(Acutoff) (113)

14 125 () log ((Lees

whereA utof IS the cutoff scale. The problem here is that the self-cogplianishes
for all x whenAcutor — oo and thus the description of the Higgs boson is trivial.
That has also been shown to hold for two-doublet Higgs md@dls This triviality
problem of the elementary Higgs boson means that it has tomsdered an effective
description valid at low energy (i.e. at scales lower tharergmew physicsets in).
The larger the Higgs coupling is, the lower the scalgi.g has to be. This leads to

2Split Supersymmetry [17] claims to have much larger bregkicele but do also give up on the natural-
ness problem.
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the so-called triviality bounds on the Higgs mass. For theim&l one-doublet Higgs
model the bound is computed in Ref. [19] todg < 640GeV.

This is another hint that the elementary Higgs boson is netihole story, but
might as well be a low energy effective description. The cedor the underlying
theory is then again motivated by the fact that new physiosilshbe within the reach
of the TeV scale and thus one of the next collider machinesJloHILC).

1.4 Fermion Masses

Compared to the symmetry breaking scale on which an uppér diam be put,
it is not so easy to put constraints on where the mechanismgeiwerating fermion
masses appear. Flavor physics is also a very interestirtggmnoand solutions have
been proposed in the context of extended technicolor, tunglgauge theories. By
flavor physics, we mean the problem of generating the massresxand mixing angles
etc. of the SM particles, as well as producing viable massealf the new particles,
introduced to the theory. This area of beyond-SM physicknetibe the main emphasis
in this thesis, though, and we will refer to the literatureq®.g. [22]). It is interesting
to note that there is no explanation of the flavor symmetrakireg in the SM where
only the top quark has a®(1) Yukawa coupling. Neither is there any enlightening
information to gain on the flavor symmetry breaking in the glap supersymmetric
models such as the MSSM.






CHAPTER 2

Technicolor

2.1 Introduction

Here we will only give a brief introduction to technicoloebries. There are many
great reviews of technicolor in the literature e.g. that b &hd Simmons [22] and
Refs. [23, 24, 25, 26, 27]. Also interesting is the paper bynverg [28].

Following the basic idea of Farhi and Susskind [24] it is linstive to consider
the SM without a Higgs sector. Naively one would think that #lector gauge bosons
would remain massless and the gauge symmg&tfy2);, x U(1)y unbroken. This
is, however, not true as for the fact that quantum chromoulyes(QCD) will break
the electroweak symmetry down to that of electromagnetisfh).,,, via spontaneous
symmetry breaking of chiral symmetry. The symmetry bregkimcuum condensate is
the scalar quark bilinear (considering here two-flavor QCD)

<ﬂL’U,R—|—CZLdR> #0. (2.2)

This happens due to the attractive exchange of gluons inpimez&ro, isospin zero
channel which causes condensation.

The result of the Higgs mechanism is this. The Higgs mechaoiscurs and the
pions are in the unitary gauge the longitudinal modes ofitfie and Z bosons. The
masses would be

F, M
MW:QTNZQMeV, My = =W

2.2
cos Oy (2.2)

which holds because of the isospin symmetry (which worksiatodial symmetry).
We will now briefly show how the Higgs mechanism works. It canumderstood
via the vacuum polarization tensor

" (p) = — / d*z e P (TJ (@) 1(0)), (2.3)

where ,
T (@) =y (x)%v“’w (z) , (2.4)

(") 2.5
w=(1) @5)

is the weak current and
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andr the Pauli matrices andt = (77)f = 71 4-i72.
The pion decay constant is defined by

0177~ () = ﬁ D 2.6)

The pion pole contribution to Eq. (2.3) is
i 2

F
0" (p) = ——p'p’ —= + ... . 2.7
(p) PP (2.7)

Gauge invariance of the polarization tensor implies theait be written in terms of a
single Lorentz scalar

" (p) = i(p*g™ — p"p")(p?), (2.8)

and the Lorentz scalar then reads
F2
Op?) = =% +.... 2.9
(r°) op° + (2.9)

The W propagator to leading order in Landau gauge is

w ) pip”\ 1
DEY = —i (g"’” — ) —, (2.10)
0 p? ) p?

where the 0 refers to the propagator being leading order.igfteh orders we need to
sum the geometric series

v ]- ¥e% v ]- I1e] v

D" = D§¥ + - g*Df 5D} +59°Df MDY TLsDY +...  (2.11)

) pHpY 1
=— By . 2.12
' (g P2 ) p? (1 - 3g°T1(p?)) @12

Inserting Eq. (2.9) the full propagator reads
w_ i w PP 1

pr= (gl P ) p?— 392 F2’ 219

and it is easily seen that thi&-boson now has acquired a mass

What we have shown is the Higgs mechanism: When a massleszeaqi particle
couples to the gauge current a mass is generated for thdateslogauge boson.

In QCD chiral symmetry breaking (CSB) is driven by this qubilinear conden-
sate and good high-energy behavior is assured byl the J = 0 quark-antiquark
continuum [29].

Comparing with the SM with one Higgs doublet thié mass is%ngeak, where
Uweak IS the vacuum expectation value (VEV) of the Higgs boson. &kerthe theory
produce the corred¥ mass consider an asymptotic free (confining) gauge thedhy wi
symmetrySU(2);, x SU(2)r which is broken down t&U(2);,+r by the bilinear
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Figure 2.1: Technicolor condensation by techni-gluon exge in the spin zero,
isospin zero channel.

(techni-)quark condensate, see Fig. 2.1. We here imagineayt which is the direct
product of anotheSU (N') gauge group (of technicolor) and the SM gauge groups

SU(NTC)TC X SU(3)C X SU(Q)L X U(].)y . (215)

If we force the gauge current which couples to the partidgivalent to the pion, to
be
FTC = tyear = 246GeV , (2.16)

then the gauge bosons will acquire the correct (measureshasaThis is a very simple
example of a technicolor model. It is simply a scaled-up ieeref QCD where the
condensate equivalent to the QCD CSB condensate is useédk tire electroweak
symmetry at the correct scale.

In this type of QCD-like technicolor QCD results can be usednbke estimates
in the technicolor sector. These results are most relightaygh, if one considers
the gauge group of typSU (Nr¢) in the fundamental representation. In the large
Nrc¢ limit we can naively estimate masses of technimesons. Tdteteolor scale is

estimated to be
/ 3 FTC
ATC ~ N—Tc ;‘ AQCD . (217)

The reason why the ratio of number of colors from technicto®CD is reciprocal
lies in the fact that the pion decay constant is proportitmtie square root of “colors”

F ~ /N . (2.18)
From this, one can deduce that the meson masses from the @&Dwsp would scale
like
3 FTC
Mec nimeson ™~ — = M —Imeson » 219
tech 1/ Noo . QCD ( )

where an example could be the teclrfrom the QCDp meson.

The previous example of a QCD-like technicolor is just thaest case. It is
straightforward to generalize to a more complicated mdaefact, any strongly inter-
acting gauge theory which has a chiral symmetry pattern» H, whereG contains
SU(2)r x U(1)y andH containsSU (2)y x U(1)em andnot SU(2)r x U(1)y, will
break the electroweak interactions down to the electromtégone [27]. The reason
why H should contairbU (2)y, i.e. the custodial symmetry, is to satisfy the following
relation for thep parameter at tree-level

M,

I | A——— 2.20
M% cos? 0, ( )

P
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Figure 2.2: (a) ETC diagram with gauge boson interactingy Wwath techniquarks and
SM fermions. (b) Diagram giving masses to SM fermions whehnéolor condenses.

2.1.1 Fermion Masses and Flavor Symmetry Breaking

In a sense the minimal Higgs model of the SM is very econonaigilalso provides
fermion masses through Yukawa couplings of the type

T pd, (2.21)

wherel is the Yukawa coupling constant,is the left-handed Dirac spinor of quarks,
the Higgs doublet and finally the right-handed Weyl spinor for the down-type quark.

This coupling is, however, not possible in technicolor tiie®per se, as it requires
four-fermion interactions which are described by unreraimable dimension-6 op-
erators. The most popular way to deal with this issue is tamihtce another gauge
interaction called extended technicolor (ETC) [30, 31].

ETC theories are not the main focus of this thesis and wils thot be discussed
in depth and we will refer to the literature. However, theus®f mass generation,
flavor physics and problems with ETC models are quite immorita the context of
technicolor theories so we will here briefly explain the cepis.

The ETC gauge interactions must connect the chiral symesatfithe techniquarks
to those of the SM fermions. This is done via an interacti&e the one shown in
Fig. 2.2a. After technicolor chiral symmetry breaking ahd formation of the techni-
color condensate, the diagram can be drawn as the one in.Bhy. 2

In order to set up the scene we want to introduce just a “toyCHiiodel. Consider
a model composed by a gauge gra&iip(Nerc), where

Ngrec = Nr¢ + Ng , (222)

andN, is the number of SM generations. The model transforms asrsirofable 2.1.
The ETC gauge group will now be brokévy, times down toSU (Nr¢) as shown in
Fig. 2.3. This provides three different mass scales sudretheh SM family can have
different masses. This type of technicolor with associ&&gq is called sone family
model[32]. Notice that the heavy masses are provided by the bmgadtilow energy
and the light masses are provided by breaking at higher giseades. The estimate of
the masses generated at a certain scale will be explainetysfidis model does not,
per se, explain how the gauge group is broken several tine@tbien is the breaking of
isospin symmetry accounted for.

With an idea of how an ETC model could be constructed we nowtimsome of
the ETC induced (dimension-6) operators which are theviolig

QT QU Ty QT Q" T"Q Py TPy T
(e77) A2 + Yab
ETC

+ Bab , (2.23)

2 2
AETC AETC
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Table 2.1: Quantum numbers for a “toy” ETC model.

SU(NETC)ETC SU(3)C SU(Z)L U(l)y
Ur,Dy, O O O 1/6
Ugr O O 1 2/3
Dgr O O 1 -1/3
Np, EL O 1 O -1/2
Ngp O 1 1 0
Er O 1 1 -1
SU(NTC + 3)
4 (FTC)3
Ay L omy~ —5—
A7
SU(Nrc + 2)
Am(FIC)?
Ay | mo~ —F——
A3
SU(NTC + 1)
4 (FTC)3
As | mg~—2x 1
A3
SU(Nr¢)

Figure 2.3: Breaking of the “toy” ETC group in 3 stages dowthe TC gauge group
providing three different mass scales.
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where we denote b the techniquarks and hythe SM fermions. Performing a Fierz
rearrangement, following terms are the most interestireppmenologically

_Ta 7Tb _Ta, _Tb 7Ta 7Tb
ST g QTUQQT'Q || ST VT | (2.24)
A A A
ETC ETC ETC
Thea-terms lead to the wanted mass terms for SM fermions
2 —
me ~ TELC(QQ) pre (2.25)

Mre
wherem, is the mass of e.g. a SM quarkgrc is the ETC coupling constant eval-
uated at the ETC scal@{rrc¢ is the mass of an ETC gauge boson &) prc is
the technicolor condensate where the operator is renaretbéit the ETC scale. The

condensate can be related to the condensate renormaliitesl tachnicolor scale via
following relation

AeTC
(QQErc) = exp </ d(In u)vm(a(u))> (QQrc) , (2.26)

Arc

wherev,, is the anomalous dimension of the operator and the integrafithe opera-
tor is from the ETC scale down to the TC scale. For QCD-likéteécolor theories the
coupling

1
a(p) < —, foru>Arc, (2.27)
Inp

which implies that the anomalous dimensign « «a(u) so the integral is

Ym
(QQErc) ~In (AAETTCC> (QQrc) . (2.28)

which is not a big enhancement of the operator (as comparnbatof a walking type
of theory as we will see later). Therefore the mass term gield

2
my ~ JETC NS (2.29)
METC

as the condensate is proportional to the number of techoriol
(QQ)rc ~ NroAie . (2.30)

By dimensional analysis we get [33]

QQETC TC\3
my = 4T (Fw ) . (2.32)
ETC

The G-terms of Eq. (2.24) provide masses for pseudo Goldstonerisoga a dia-
gram like that of Fig. 2.4 and also provide masses for tectimie [22]. This provides
masses for the unwanted massless particles that still canoidematic phenomeno-
logically. We will later see that walking technicolor willfther enhance these mass
terms.

The last class of terms, namely theerms of Eq. (2.24), is the point where the
trouble comes in. Generally following terms will be induced

1

(57v°d)(57°d) + (iv’e)(ey°e) + ..., (2.32)

2 2
AETC AETC
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m----- ---- I

Figure 2.4: Diagram contributing to mass of pseudo Goldstwsons via an exchange
of an ETC gauge boson inside the fermion loop.

wheres, d, i1, e denote the strange quark, the down quark, the muon and tbecele
respectively. The first term is AS = 2 flavor-changing neutral current interaction
which would contribute to & ;, K's mass difference which is quite well-known exper-
imentally. This constrains the ETC scale to be larger tt@nTeV [30] which in turn
puts an upper limit on how large masses can be generatetgssethan around 100
MeV (for a small coupling and number of technicolors as welihee choice of the fun-
damental representation of the gauge group). Even the roatisef charm quark will
be difficult to generate with the classical ETC model. As wk sde later the problem
is ameliorated by walking technicolor.

The second term of Eq. (2.32) will induce flavor changing psses in the leptonic
sector such ag — eée, ey which are not observed.

2.1.2 Oblique Parameters

An important notion is the oblique parameters (also calleskih-Takeuchi param-
eters) which are computed from the quantum correctionste¢lf energy of the gauge
bosons [34, 35]. They are important, because with thoserat has an easy way, to
compare the effect of the quantum corrections, of the netigtes in the theory, to the
experiments.

The idea is that they span a basis of the quantum correctmmsilsuted by new
physics. The approximation is then, that the dominant effefthe new physics resides
in the gauge boson propagators. Because almost all eleztoabservable contain
gauge boson propagators, the contributions of the new physithen accounted for
when the contributions to the propagators are considereplioi it is not known if
this method works for a specific model, but there are many tsddewhich it does
work out well.

There are general arguments to why it is universal to consite contributions
to the self energy of the gauge bosons. The gauge bosonsciougll the particles
charged under the given gauge group so their self energieandwianced by the multi-
plicity of the new particles. Contrarily, process specifimgtum corrections are fixed
by flavor quantum numbers on the external legs. Experts atreleeak precision data
and data analysis then make fits and provide the experinaetairred values for these
three parameters which the model builder then, by relatisiehple computations, can
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compare with. The definitions of the parameters are theitig

A I (0) I )
G(Mz)T = M2, Mz (2:33)
N new 2Y) _ Tnew
a(é\{zz) o= I (M) mill7: 0 (2.34)
45%,¢c7 Mz

A(M TIRew M2 — [Ihew

AV2) (54 1) = T W) T ) (2:35)

457 My,

wherea is the fine structure constant in tAgS-schemesy = sinf,(My), ¢z =
cos B, (Mz) andIl,; are the self energies with respect to the gauge bason

The result of the current fit [3] is shown in Fig. 2.5. The SMereihce point, at
which all theS, T, U parameters vanish, is

Aajon(M3) = 0.02758, as(M2) = 0.118 |
Mz =91.1875GeV my = 175GeV ,
myp = 150GeV | (2.36)

whereAaﬁ?d is the hadronic vacuum polarizatiam, is the coupling constant of QCD
andMz, m;, my, are theZ mass, the top mass and the Higgs mass, respectively. The
central point of the fit is

S =0.07£0.10,
T=0.13+0.10, (2.37)

whereU = 0 is imposed [3]. It is seen from the Fig. 2.5 that a low Higgs snias
preferred by the electroweak precision data (EWPD). Howeueimportant point is
that theS parameter can have positive corrections if alsoftparameter has a positive
correction.

A perturbative computation of on®U/ (2), doublet, say( NV, E), , contributes the
following to the S parameter [34]

2
S= L li—ym(™)]| (2.38)
6m m?2
E
2m2,m?2 m2
= 2 2 _ 2 N F N 2
167s2c2 M2 {mN i mi —m% . (m% ’ (2.39)

whereY is the hypercharge. If there is no isospin breaking in thebttwnder con-
sideration then the5' parameter is simply-. The T parameter is approximately

2 .
1277192(2 (Am";) whereAm = |my — mg|. TheU parameters can be looked up in
s2¢2 mZ,

Ref. [34] but it is in general thé parameter which is problematic in technicolor theo-
ries and hence emphasized here.

Considering the simple example of Section 2.1.1 the cauntidh to theS parame-
ter would be

1 2
S =— (NTC(N(: = 3) =+ NTC) = —N7r¢ , (240)
67 3

where the first term originates from the techniquarks whatyctechnicolor and QCD
color and the second terms is for the technileptons whicty canly technicolor.
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0_4 T T T | T T T |
1 [ Im=178.0+4.3 GeV

v’*\\\\\\\"“ \
Ly,
N e
N\

m,,= 114...1000 GeV \é\\\\\y‘ We
0.2- S
' S
i “\\»“}\ 5
JRe

68 % CL |
-0.4 -0.2 0 0.2 0.4

Figure 2.5: Result of fit of electroweak precision data. Tbetour curve is the 68%
CL in the (S,T)-plane with central value (0.07,0.13). Thadmaret1 sigma on the
measurements df;;, My, andsin® 92‘}1{“0“. The banana shaped region corresponds to
the SM prediction with a top mass; = 178+4.3 GeV and Higgs mass;, = 3007790

GeV. The plot is taken from Ref. [3].
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Figure 2.6: Rainbow approximation for the technifermiotf seergy function. The
boson is a technigluon.

In general a techniquark doublet (transforming under timgl&amental representa-
tion of the technicolor gauge group) will contribu¥&- /(67) to the.S parameter and
N.Np¢/(6m) if it also carries QCD color.

The lesson to learn here is that the more matter the modednires, the larger the
S parameter will bé&

2.1.3 Walking Technicolor

A way to circumvent FCNCs and still have sufficiently largessigerms for the SM
fermions and, equally important, sufficiently large massitefor the pseudo Goldstone
bosons and techniaxions of the theory, is to achieve walking

Computing the quantum correction to tf@Q) operator from the ETC scale down
to the technicolor scale (i.e. Eq. (2.26)) the contributidnthe QCD-like technicolor
theory is that of Eq. (2.28). This contribution is small besathe anomalous dimen-
sion of the operator is small in the energy rarge- < 1 < Agrc. However, if the
theory exists approximately at a conformal fixed pointi.e.

a(p)=a*#£0, where [(a*)=0, (2.41)

then the radiative corrections will change into the follogiform (recalling thaty,,, «
a(p) which is nowy,, « o* independent ofi in the energy rang&rc < 1 < Agrc)

Ym (™)
(Q@erc) ~ (FE2) T (@ere). 242
TC

which is a considerably larger contribution [36, 37, 38,.39k.9. Aprc ~ 103Arc
this factor is quite big. The fact that = 0 implies that the technicolor coupling
does not run, but instead runs very slowly, i.e. it “walks”’huB the namevalking
technicolor

An interesting twist to this point is that walking can alsodmhieved with only an
approximatdixed point or anear conformafixed point. It is not possible to show this
within perturbation theory, so one way to go is to use a nauopleative approximation
for v, and chiral symmetry breaking based on thimbowapproximation (also called
the ladder approximation) to the Schwinger-Dyson equdd@j, see Fig. 2.6. The
full nonperturbative fermion propagator in momentum spaeels

iS™'p) = Z(p) (p — =) (2.43)
and the Euclidianized gap equation in Landau gauge is giyen b
d*k o ((k—p)?) Y (k?)

) =300 [ o e e e @4

1Before the data analysis done in [3] the central value ofShearameters has always been negative
which was unobtainable in technicolor models.




2.1 Introduction 17

where Z(k?) = 1 in the rainbow approximation and we linearize the equation by
neglecting®?(k?) in the denominator. By converting to a differential equatand
assuming that the coupling(y) =~ a. is slowly varying 3(a) ~ 0), following ap-
proximate (WKB) solutions are then found [41]

S(p) occp W L B (p) o prm =2 (2.45)

where the critical coupling is given in terms of the quadr&asimir of the represen-
tation of the technifermions -
c=E Ao - 2.46
“ 3Cs(R) (2.45)

The anomalous dimension of the fermion mass operator ttegtsre

a(p)  3Cy(R)a(p)
Qe 2r '

V() =1 =4 /1 - (2.47)
The two different solutions can be understood in terms offfsyin the following way.
The solution is proportional to two terms. The first one cepands to the running of a
normal mass term of nondynamical origin and the second termesponds to a “soft”
mass dynamically generated and with/a? behavior in the limit of large momentum.

The rainbow approximation indicates that spontaneous stmynbreaking will
only occur if a reaches the critical coupling. of Eq. (2.46). From Eq. (2.47) the
following equivalence is seen

a(ATC) =0 <= A/m(ATC) =1. (2.48)

This defines the symmetry breaking scalg- and it is believed that beyond the rain-
bow approximationy,, =1 at the critical coupling [42, 43]. In the rainbow approxi-
mation the symmetry breaking occurs when the “soft massi tend the “hard” non-
dynamical mass scales in the same way.

In QCD the coupling drops quickly and the anomalous dimangiets small. So
the crucial assumption is that the beta function

Bla(n) =0, for Are < p < Agrc, (2.49)

which in turn keepsx ~ «. and finally~,, large. Then the result of the computation
of the radiative correction from the ETC scale down to the Etéle of the operator
(QQ) is exactly that of Eq. (2.42).

The reason why walking can ameliorate the problem of FCN@sdhnicolor mod-
els is that with a large enhancement of tfi¢Q) condensate, the terms generating
masses for SM fermions and technicolor pseudo Goldstonenisasre enhanced by
a factor ofAgrc/Arc while the *y” terms in Eq. (2.24) do not include any techni-
guarks and thus no enhancement. Then one can crank up thedaleCasd suppress
the FCNCs. Before one gets too pleased about that, it sheuteted that in order to
have sufficiently low rates of FCNCs the largest mass the imgliechnicolor model
can account for is- 1 GeV [36]. By tuning a model one can perhaps account for the
bottom mass, but it is certain that something has to happerdier to account for the
large top mass.

The question of walking is essentially of nonperturbatiaéune so it is a subtle
point of the theory. If the3-function is kept small to finite order in the perturbative
expansion, one is still not assured that no higher orderdeain the walking.

A final important point is how to make a technicolor theory akivey theory.
For technifermions transforming with respect to the fundatal representation of the
gauge group, the number of flavorg;, has to be close téNrc £ 20% [44].
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2.1.4 The Problems with Technicolor

In order to have arealistic extended technicolor modegastthe following criteria
has to be fulfilled

e It must be asymptotically free and cannot have gauge anemali

e It cannot be at odds with electroweak precision measuresmenit has to have
reasonablé&, T' (andU) parameters.

e |t must account for the mass hierarchies and at the same &merate the very
small neutrino masses.

e It must generate sufficiently large masses for its gaugerimaod Goldstone
bosons etc.

e It must generate weak CP-violation without too much strofguidlation.

e It must generate isospin breaking in order to account fotgpebottom, charm-
strange and up-down mass differences without being at odtislve EWPD fit
to theT parameter.

e It must account for the large top mass and in the same time aoryribute
sufficiently little toZ — bb andb — s+ [45].

e It should also have a candidate for dark matter which is nbéyeluded by dark
matter search experiments such as the CDMS.

¢ |t must unify at some large scale in order to explain the gaation of electric
charge.

Some of the problems have been revealed in the course ohifuger e.g. the prob-
lem with the largeS parameter which is typical in technicolor theories. Thia ba
cured by putting as little matter into the model as possibje @e doublet of techni-
quarks transforming under the fundamental representafiéfi/ (2) or SU(3) which
gives anS parameter of 0.11 and 0.16, respectively. This is withinsigma.

Another problem already introduced is the large FCNCs wharhbe ameliorated
via walking technicolor. Having the techniquarks transfaunder the fundamental
representation of the technicolor gauge group, a minimurootdrs (2) and the re-
quirement of walking would implyV,; = 8, meaning 4 doublets. That corresponds to
S ~ 0.42i.e. quite big.

Theoretically there are several ways to circumvent thisiphgenological dilemma;
either we have too largé or no walking: One way is to make a negative contribution
to S by having a sufficiently large mass splitting in the (one or@)aloublets (and
hypercharge different from zero). Another way is to choofferént representations
of the technicolor gauge group. This is the idea of the modhétivwe will present in
the next section.

2.2 The Sannino-Tuominen Model

The idea of having quarks (or techniquarks) transformindeura higher dimen-
sional representatiofisf the gauge group is not a new idea. An early attempt of having

2We use the name higher dimensional representations, ledéRy > d(0J) with R # Oand it is
understood that it is representationsSif (V).
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quarks transforming under a higher dimensional repreientaf the gauge group is
done by Ma [46]. The quarks in higher dimensional represiems.carry “more color”

than those of the fundamental representation and thus hfigeedt characteristics.
The use of higher dimensional representations for quarkkencontext of dynami-
cal symmetry breaking is considered by Marciano [47] wheuaie quarks belong to
6,8,10 of SU(3). . Higher dimensional representations of technicolor-tikeories

has been considered by Eichten and Lane in Ref. [30].

We will now consider a technicolor extension of the SM withages in higher
dimensional representations starting by the simple case@index symmetric and
two-index antisymmetric representationsif (N ). This class of models has been
considered by Sannino and Tuominen in Ref. [4] and also atéRefs. [48, 49, 50].
In this line of research a prototype ETC has been construicteef. [51] and effective
theories and considerations on dark matter has been madd.ifilRand finally more
aspects of a possible relic abundance and experiment#s lonidark matter has been
considered in Ref. [2].

The motivation for choosing this class of higher dimensioepresentations is due
to a map by Armoni, Shifman and Veneziano [52, 53], whichestatn equivalence
between Yang Mills theories with a Dirac fermion in two-ixd/mmetric or antisym-
metric tensor representation®t/ (Nr¢) and supersymmetric Yang Mills (SYM) with
large N7¢. This makes exact solutions from SYM usable in this clasgciihicolor
models (with two-index symmetric and antisymmetric repreations).

Another motivation is that we will show that it is possiblentake a walking tech-
nicolor model with less matter than that of the minimal mddehe fundamental rep-
resentation.

ConsideringVy = Np/2 Dirac flavors (whereVp is number of electroweak dou-
blets) in the two-index symmetric (S-type) representadind two-index antisymmetric
(A-type) representation. The perturbatig€unction reads

g5

3
g
=-By—s —P1—— +... 2.
B=—0o any? B an +..., (2.50)
where the coefficients are given in terms of number of teadiais and number of
flavors by [4]

11 2

Bo = ?NTC - ng(NTC +2),
34, 10 2

B1=—Nic— N¢(Npc £2) | —=Nrc + —Nre F1)(Nre £1) ) , (2.51)
3 3 Nrc

where the upper sign is for the S-type and the lower sign thgp&-case. It is inter-
esting to note that in the limit of infinit&/'¢, the 5-function is that of SYM and the
S-type and A-type models coincide.

Asymptotical freedom is intact when

11 Nrpc¢

2 Nrg 2
The next important value for the number of flavors is wheretli@®ry enters the

conformal window. Considering the Banks Zaks fixed pointthe §-function trun-

cated to the first two terms (Eq. (2.50)) and set equal to zbecoupling constant

IS
o = —471'@ (2.53)

B

Ny < (2.52)
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Figure 2.7: Phase diagram of number of Dirac flavdisvs. number of technicolors
Nre for two-index symmetric (a) and antisymmetric (b) repréagons of the gauge
group. The graphs are taken from Ref. [4]

From Eg. (2.46) we have the critical coupling, above which ¢lap equation in the
rainbow approximation has a non-trivial solution. Recaglthat the quadratic Casimir
for the two-index symmetric (S-type) and antisymmetrictyfse) representation is,
respectively

(Nrc +2)(Nrc — 1)

(1) = o , (2.54)
Nre —2)(Nre 41
¢ (B) = (Nre N)T(c re+l) (2.55)

we seta* of Eqg. (2.53) equal to the value of the critical coupling of. E&.46) and
obtain a critical number of flavors for which chiral symmeyestored when

83N3 . £+ 66 N7 — 132Nre
20N3 . £55N2, F60

Ny > N§~ (2.56)

where the upper sign is S-type and the lower sign is A-typéh Wiese two boundaries
at hand one can plot the phase diagram, see Fig. 2.7.

It is seen from Fig. 2.7a that with an S-type model with twdtg@colors and two
techniflavors it is very close to the conformal window. Intfétee critical number of
flavors for two technicolors is- 2.075. In the A-type case, one has to go to four
technicolors in order to have less techniflavors than in te®€)ike technicolor case
and still have a prototype walking model.

The models have built-in custodial symmetry so Thé/ parameters are no prob-
lem, if the mass splitting in the doublet(s) of technifermsas small. Thes parameter
which usually plagues technicolor theories is

1 Ny Npo(Npg 1)
Sperturbatlve - 61 2 2 ) (257)

where the upper sign is for S-type and the lower for A-type et®dnd the last factor
is the dimension of the representation i.e. the number obldtsi as seen from the
electroweak point-of-view.

It should be noted that the near conformal dynamics will pediheS parameter
from the perturbative value [54, 55]. In the estimate mad®&éf. [54] taking into
account the nonperturbative part gives a reduction of at@096.
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Considering first the S-type models: With two technicolong flavors are needed
and for the minimal model with only one electroweak doulslet 1/(27) ~ 0.16.
This specific case, though, adds three electroweak doufdldtee SM and the full
theory would suffer from the Witten anomaly [56] unlessl tit odd number of elec-
troweak doublets are added. For simplicity one could addualticdamily of leptons.
This specific case is considered much more in detail in l&etians of this thesis. The
flavor symmetry would b&'U (4) breaking toSO(4) because the two-index symmet-
ric representation (i.e. the same as the adjoint represemiat SU(2) is real). More
on this in the next section. Having instead three technisolmuld render the extra
leptons superfluous but on the downside the- 1/7 ~ 0.32. The flavor symmetry
would be justSU(2), x SU(2)r breaking toSU (2)y .

With the A-type models one needs four techniflavors in ordebe better off
than ordinary QCD-like walking technicolor. Here extraatfeweak doublets are not
needed as it is six times four doublets which are added toth&.8. an even number).
Compared to the S-type models it is a whole lot of matter wigcheeded. Namely
four technicolors and eight techniflavors which makes 4 /7 ~ 1.27, which is quite
off with respect to the EWPD.

2.2.1 The Composite Higgs Mass

A final point which is quite interesting in the Sannino-Tuowm class of models
is that it is possible to obtain a light Higgs boson as we omigfty will point out and
otherwise refer to the literature. This is in sharp contwagt QCD-like technicolor as
the scaled up result from the QGDPmeson would estimate the Higgs boson mass to
bedr FTC = 47vyea Which is quite big.

First it should be noted that it is not possible to scale up Q&Drder to obtain
results in a walking/near conformal technicolor theory.o8eer tools have to be used.
There are two obvious ones. The larlyeexpansion and lattice computing. Lattice
computing might be the most precise but also the most indodwel expensive in flops
and computer time.

The largeN expansion associated to estimating the Higgs mass has lbeen d
in Ref. [48]. The S-type model is used with the limit;c — oo and the number
of flavors IV is set to one (which is considered a good approximation tg.tWie
Higgs boson is identified with the scalar fermion-antifesmstate whose pseudoscalar
partner in QCD is known ag'. The model is mapped into SYM using the mentioned
map due to Armoni, Shifman and Veneziano [52]. The bosorgtoseontains a low
mass scalar and pseudoscalar meson. In this limit, the siassebe related to the
fermion condensatgq) = (1"} qy; ;1) [57]

2 3dq) \* 2.
M=2a =T )" — 240 2,
3% (32W2NTC 34 (2:58)
with
(Gq) = 3NrcA?, (2.59)
(9N
a=a (3%2) : (2.60)

whereA is the one loop largév-invariant scale of the theory. It has been argued in
Ref. [48] thata is of orderl — 3 and an example connected to QCD is illustrating
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Table 2.2: Summary of the properties of th& (2)-Adj. model.
upper limit of asymptotic freedondy, | 2.75
lower limit of the conformal windowN$ | 2.075
critical coupling for chiral symmetry breaking,. | 7/6 ~ 0.52
S [ 1/(27) ~0.16

this point. This gives the first estimate of the compositegdiposon mass, namely
my, ~ M, whereM is that of Eq. (2.58)1/Nr¢ corrections are found to be

ma 4 1 (G, G") 0( : )

h
M~ T 9Nz  8Nre  aAl NZ..

(2.61)

where(GY, G ~ A* is the technigluon condensate and the upper sign is for S-
type models and the lower for A-type models. As the second terdominating, the
S-type models have a lowered Higgs mass compared to QCDvékeng technicolor

theories and the A-type models have an increased Higgs mass.

2.3 TheSU(2)-Adj. Model

For phenomenological reasons the specific model with theitdiex symmetric
(S-type) representation &fU(2) in the Sannino-Tuominen class is the most interest-
ing, as was illustrated in the previous section by the lowealf theS parameter. The
corresponding model with three technicolors has lagyparameter, but on the other
hand it does not need to be cured by an extra family of lepttireso has a slightly
larger Higgs mass than the one with two technicolors. Anothieresting thing is
that it has flavor symmetr§U (2),, x SU(2) g breaking taSU (2)y giving three Gold-
stone bosons which are all eaten and become the longitudoggs of the electroweak
gauge bosons. In that sense there is not so much to explomnetias minimal model
that is preferred by EWPD. Therefore we choose to inveditfa model with two
technicolors in depth.

This section and most of the rest of the thesis is devotedetintrestigation of the
S-typeSU(2) model with only one electroweak doublet.

The two-index symmetric representation$f (2) is real and it is equal to the ad-
joint representation afU (2) and we will from now on just call the model tH&7(2)-
Adj. model.

Some of the results obtained in the previous sections arensuized for this model
in Table 2.2.

Since we consider adjoint Dirac fermions, the critical nemtf flavors is indepen-
dent of the number of colors [51]. We expect that the theolly eviter a conformal
regime unless the coupling rises above the critical vahliggering the formation of a
fermion condensate. Hencé\g = 2 theory is sufficiently close to the critical number
of flavors N = 2.075. This makes it a perfect candidate for a walking technicolor
theory.

The technifermions are

(U{mﬂ}

D{O"ﬁ}) ) Ul{%aﬂ}’ Dgﬂuﬁ}’ witha, 8 =1,2. (2.62)
L
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Since the two fermions can equivalently be written as adlfeirmions we have
a Ua a a
QL: Da 9 UR) DR) a:172537 (263)
L

with a the adjoint technicolor index o$U(2). The left fields are arranged in three
doublets of theSU (2) ;, weak interactions in the standard fashion. The condensate i
(UU + DD) which correctly breaks the electroweak symmetry.

As mentioned in the last section this model, as describe@disstffers from the
Witten topological anomaly [56]. AU (2) gauge theory must have an even number
of fermion doublets to avoid this anomaly. Here there aredhextra electroweak
doublets added to the SM and we need to add an odd number detuthe simplest
thing to do is to add one more doublet. Since we do not wishstudi the walking
nature of the technicolor dynamics, the doublet must be lanieolor singlet (and in
order to keep th& parameter small).

Our additional matter content is essentially a copy of addath model fermion
family with quarks (here transforming under the adjointressentation o6U (2)) and
the following lepton doublet

L = (Vg) , V¢R > CR - (2.64)
L

Now we need to assign hypercharge to the new fermions in suzhyahat there
will be no anomalies. Following the analysis done in Peskith &chroeder [9] we can
write down constraints on the hypercharge. The exhaustedfldiagrams giving rise
to anomalies is shown in Ref. [9]. However, not all of them moe-vanishing or lead
to new constraints. It will suffice to consider the diagrarhBig. 2.8.

Let us be generic and assigyi2 to the left-handed techniquarks and to the left-
handed new leptons. In order to have the correct electriggehfar the right-handed
fermions, the hypercharges for the new particles are now

Y@=, Y(Un, Dr) = (yT“y—;l> , (2.65)
Y(cL):g, Y (Ng, Eg) = <z—;—12;1) , (2.66)

wherey, z e R.

First the diagram (a) of Fig. 2.8, which is two technigluond al (1) hypercharge
gauge boson, will lead to the following constraint (we usedbnvention of Peskin and
Schroeder to add the left-handed particles with a facter Of

S Yie = -2 (%) + (y?“) + (y?_l) ~0. (2.67)

The diagram (b) with twa'U (2) electroweak gauge bosons gives rise to

Sy = -3 (%) . (g) —0 = [z=_3y|. (2.68)

31t is interesting to note that our technicolor sector hasshme fermionic matter content as that of
N = 4 super Yang-Mills.
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SU(2) SU@2)  SU(@2) SU(2)
(@ ()
U(1) U(1)

U(1) U(1) graviton graviton
(c) (d)
Figure 2.8: Important diagrams that need to be consideredder to write down an
anomaly free theory. In (a) th€ (1) hypercharge gauge boson and two technigluons
are connected via a triangle of fermions. In (b) th@ ) meets two electroweak gauge

bosons and in (c) it is just thréé(1) gauge bosons. Finally (d) is the triangle with two
gravitons and a singl& (1) gauge boson.

The diagrams (c) and (d) give the following constraints

w3 (4 ()

—6(%)3+3(yT“)3+3<yT_1>3:0, (2.69)
Srea(2)- () ()
—6(%) +3 (yTH> +3 (%) —0. (2.70)

The cancellation in the sum of cubed hypercharges is naakras the techniquarks
contribute9y /4 and the new leptons contribute the same with opposite sige.stim
of hypercharges is trivial as it is obeyed even within thenteguarks and the new
leptons separately.

Thus the generic gauge anomaly free hypercharge assigmeaetst

Y(Qr) :%, Y(Ug, Dg) = (y?“y—;l) : (2.71)
Y(Lr) =~ 3% : Y (v¢r,Cr) = (—3;;; L _33/2_ 1) . (2.72)

In our notation the electric charge @@ = 75 + Y, whereT3s is the weak isospin
generator. We summarize the charges in Table 2.3. One necibveSM hypercharge
assignment foy = 1/3. In Ref. [51], the SM hypercharge has been investigated
in the context of an extended technicolor theory. Anothéeresting choice of the
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Table 2.3: Quantum numbers for t§é/(2)-Adj. model.
SUR2)rc | SUB). | SU2)r | U1y
UL7 DL 11 1 O y/2
Ur M 1 1 ytl
Dr m 1 1 yl
ver, CL 1 1 g —3y/2
VeR 1 1 1 =Sytl
(R 1 1 1 =yl

hypercharge i3y = 1, which has been investigated, from the point of view of the
electroweak precision measurements, in Refs. [49, 50highdase

QU) =1, QD) =0,
Qve) =-1, Q)=-2, with y=1. (2.73)
Notice that with this particular hypercharge assignméd 2 techni-down is electri-

cally neutral.

Since we have two Dirac fermions in the adjoint represemaif the gauge group,
the global symmetry i$U (4)gavor-

It is a simple exercise to show that the flavor symmetry of fenwin real repre-
sentations of the gauge group is exadly (2Ny) instead ofSU (Ny)r, x SU(Ny)g .
In the case of a real (real-positive) representation theisisea symmetric matrixs
such

T*[R] = -ST*[R]S™*, Va, (2.74)

whereT“ are the generator matrices belonging to the representRtidrerforming a
gauge symmetry transformation

U = (wL> — T (2.75)
YR
and thus , 4 »
P* —y o l€ (T*) P* — eze“ST S U* (276)
Multiplying by the inverse matrixs—! we have
ST - T g (2.77)
and we can thus write down the vector
v )
“1wna | o 2.78
((8 ) (2.78)
where all the elements transform equally under gauge wamsitions.
In particular, for the adjoint representation, we have tbeggators [9]
(T°1G)),, = if**, (2.79)

where G is for the adjoint representation, ¢ are matrix indices, ang®*® are the
structure constants for the group in question. Becausetithetgre constants are real
and antisymmetric, we have

T*9[G) = —T°[G] (2.80)
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and thus thas in Eq. (2.78) equals one in the case of adjoint representatio

To discuss the symmetry properties of the theory it is coiargrio use the Weyl
base for the fermions and arrange them in the following vetiensforming according
to the fundamental representationif (4)

Ur
_| De
Q - —Z'O'QU;% ’
—ig2D?,

(2.81)

wherelU;, and Dy, are the left handed techni-up and techni-down respectamdl/»
and Dy, are the corresponding right handed particles. Assumingtdreard breaking
to the maximal diagonal subgroup, t&7(4) symmetry breaks spontaneously down
to SO(4). Such a breaking is driven by the following condensate

(QQ)easE™) = —2(UrUL + DrDy) (2.82)

where the indices, j = 1, ...,4 denote the components of the tetrapletigfand the
Greek indices indicate the ordinary spin. The matfixs a4 x 4 matrix defined in
terms of the 2-dimensional unit matrix as

0 1
E= (]1 o) . (2.83)

Following the notation of Wess and Bagger [58 = —ioiﬁ and

(URUR  eas) = —(UrUL) - (2.84)

A similar expression holds for th® techniquark. The above condensate is invariant
under anSO(4) symmetry. The easiest way to check thatSap(4) symmetry remains
intact is by going to the following base

i Mt

A tiA U™
9 R \/5 ’ L \/§

V2

. Az —ig
) GDR:Ta

(2.85)

Ur

where the\s are four independent two-component spinors. In this lmaseondensate
becomes simply
AT +X3+ A3+ A)), (2.86)

which clearly is ar6O(4) invariant. We are left with nine broken generators of thg-ori
inal SU (4) global symmetry and to the generators are associated ®oklsbsons.

In terms of the underlying degrees of freedom, and focusirlg on the technifla-
vor symmetries, the nine Goldstone bosons transform like

1
V2

for the three which will be eaten by the longitudinal compatseof the massive elec-
troweak gauge bosons. The electric charge is respectividy minus one and zero.
For the other six Goldstone bosons we have

DgrUp , UrDy,, (UrUL — DgrDy) , (2.87)

ULUr , DDy, UrDr (2.88)
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with the following electric charges
y+]—v y_]-v Yy, (289)

together with the associated anti-particles. The last siki€ione bosons (Eg. (2.88))
are di-technibaryons with opposite baryonic charge, omkraimus one, respectively.
The baryon number is a diagonal generato56f(4). As we already mentioned the
choice ofy = 1 makes one of the Goldstone bosons (namelyihe) electrically
neutral.

2.3.1 Spectrum

We have previously described the Goldstone bosons of themddese are mesons
but an interesting fact is that they are also baryons. Therflsgmmetry isSU (4) and
it is recognized that there isla(1) of technibaryon number which is conserved unless
broken by ETC interactions. The fact that the model hasgastivhich almost only re-
ceive mass from ETC interactions and have a conserved quantmber is welcomed
and can be exploited in the context of constructing a cold deatter component which
is a di-technibaryon, see Chapter 3.

The simplest low lying technibaryons are constructed infdiewing way

Bl = Quad QI e e, cocnen (2.90)
wheref,f =U,D,c =1,2,anda,3 = 1,2 are the spin indices. These states
correspond to awU (2) triplet of scalar states. In a similar fashion one can comstr
states out of only right-handed fields. A/ (2), singlet, though, has to have spin one
in order to also have antisymmetric flavor indices.

2.3.2 EWPD

We already presented the value of thieparameter for the pure technicolor part
of the model. Adding the leptons though will change thisygiet Depending on the
masses and especially the mass gap of the leptons, the nadattually be within
one sigma of what the EWPD prescribes with a convenient ehafidepton masses,
see Fig. 2.9. It is seen from Eq. (2.38) that the left wing @&f plarabola shape is for
the case where the logarithm is positive and thustheeutrino mass greater than the
¢ mass and oppositely for the right wing.

2.3.3 Effective Theories

While the leptonic sector can be described within pertuobatheory since it in-
teracts only via electroweak interactions, the situationthe techniquarks is more
involved since they combine into composite objects intimgcstrongly among them-
selves. It is therefore useful to construct low energy d¢iffectheories encoding the
basic symmetry features of the underlying theory. We cogsthe linearly and non-
linearly realized low energy effective theories for our arlging theory. The theories
we will present can be used to investigate relevant prosesismterest at LHC and
ILC. It would be interesting to perform the analysis in R&9] with these specific
theories.
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+0.5

-0.5 S
205 0 105

Figure 2.9:(S, T') diagram showing the regions tt$%/(2)-Adj. model can span with
the masses of the new leptons and( taking on values from\/; to 10Mz. The
ellipsis represent the one sigma contour of the global finéoEWPD with a reference
Higgs mass of 150 GeV. The figure is taken from Ref. [5].

The Linear Realization

The relevant effective theory for the Higgs sector at thetedsveak scale consists,
in our model, of a light composite Higgs and nine Goldstonsons. These can be
assembled in the matrix

M= (5 NG X“) E, (2.91)
2
which transforms under the fuliU (4) group according to
M — uMuT | with  uwe SU(4), (2.92)

andX® are the generators of th##/(4) group which do not leave invariant the vacuum
expectation value o/, see Appendix B

(M) = gE (2.93)

We will now show that the Goldstone bosons transform likeséhof Egs. (2.87-
2.88). Multiplying by another generatdf® on the rhs. of Eq. (2.91), taking the trace
and using thal?? = 1 we get

1 1
Tr{MEX") = iV2II°Tr { XX} = {—I1%" = i—
{mex") {xexty =is 7
A point which might seem subtle at first sight is that, in ortteeliminate the scalars,
we need to take the imaginary part of the equation which wélve us with the pseu-
doscalars

e . (2.94)

% = V2STr {MEX} . (2.95)

The matrix)M is connected to the quark content via
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This reveals that the eaten Goldstone bosons which areaeaform like

L T L ex Y
V2 V2 V2
while the baryonic sector transforms like
mt = gUP+UD s = g2 U (2.98)
V2 V2
HS/GZQUUiDDjLUUiDD H7/9:§RUU¢DD_UUiDD
2 ’ ’

(2.99)

where the real Goldstone bosons are written in terms of thailerlying degrees of
freedom which at the same time represents the charge eigesnst the model.

One should note our short-hand notation for the states. Weising the conven-
tions of Wess and Bagger [58] and the spin contracted stedededined as follows

UD=UDyp., (2.100)
DU = (D3)*Up.a , (2.101)
DD = (D%)*(D%)a - (2.102)

It is convenient to separate the fifteen generatorS{4) into the six that leave
the vacuum invarian{S®} and the other nine that do nfK} .

It is easy to show that the generatdi$*} of the SO(4) subgroup that leave the
vacuum invariant satisfy following relation

S*E+ES =0, with a=1,...,6. (2.103)
The proof goes like this. The vacuum is left invariant by teaerators so we can write
: a a : a a T
gE — eia”s gE (em s ) =  0=ia®8°E +iEa®S'T . (2.104)
Because thes are arbitrary we get

SE+ EST =0. (2.105)

U
An explicit realization of the generators is shown in Appierigl
The electroweak subgroup can be embeddefliif{4), as explained in detail in
Ref. [60]. The main difference here is that we have a more rgekefinition of the
hypercharge. The electroweak covariant derivative is

DM = 0,M —ig [G,M + MG]] | (2.106)

W, 0 yg 1 0
G, = ( 0 _%§E> +§EBM (0 _]1) . (2.107)

with

We also have

a N 3T 3
Wo=Wis, Bl=B. =B, (2.108)
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wherer® are the Pauli matrices. It is convenient to rewrite the gdaag®ns in a more
compact form

gl oT g/
G=WeL"* — ;BMR“ + ﬁy;B,ﬁ“ , (2.109)
with
Se 4 X o X7— 59
=== RT=2_"_""  and a=123. 2.110
7 7 and a ( )

With this gauging we are ensuring the correct pattern ofteda@ak symmetry break-
ing. In fact, we can rewrite

G=Gs+Gx, (2.111)
with

1 > q 3 \/— q 4
Gg=—3Y 5° W“+—B(5a} +V2y=BS*, 2.112
=7 { : L (2112)

1< g

Gx=—) X° W“——Bag] . 2.113
x= Y [ : (2.113)

The generators satisfy the normalization conditidns\ ¢ X°] = §2°/2, Tr[S® S*] =
5% /2 and Tr[SX] = 0. In the unitary gauge, three of the Goldstone bosons are ab-
sorbed into the longitudinal degrees of freedom of the massieak gauge bosons
while the extra six Goldstone bosons will acquire massedae&tended technicolor
interactions (see the Fig. 2.4) as well as the electrowdakdntions per se.

Assuming a bottom up approach we will introduce by hand a nexss for the
Goldstone bosons. The new Higgs Lagrangian is then

1 2
£ = T [DMD*M] + - Tx[MM]
N 1
- %Tr [MMT)* = NIy [MMTMMT] - 3 Mo (Mgpe)™, ,  (2.114)

with m? > 0 andae andb running over the six uneaten Goldstone bosons. The matrix
M3, is dynamically generated and parametrizes our ignorancetabe underly-
ing extended technicolor model yielding the specific mastite. The pseudo Gold-
stone bosons are expected to acquire masses of the ordered ®ifect and com-
putable contributions from the electroweak correctioreakiSU (4) explicitly down
to SU(2)r, x SU(2)r yielding an extra contribution to the uneaten Goldstonehss
However the main contribution comes from the ETC interatio

The relation between the vacuum expectation value of thgs-gd the parameters
of the present theory is

m2

AN

v? = (0)? (2.115)

In our theory we expect a light composite Higgs whose masthérbroken phasé)s
2m? . This corresponds to a small overall self coupling. In R&€][a Higgs mass in

4Note that if one assumes a strongly coupled linear sigma htbel@elation between the physical mass
and the mass parameter in the theory is no longer linear apdrtent modifications are expected [49].
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the rangeM iy ~ 90 — 150 GeV is predicted, see also Subsection 2.2.1. By choosing
the fiducial valud 25 GeV and recalling that in our conventions we havg, = vg/2,
we then find

1
A+ A~ 3 with v~ 250 GeV . (2.116)

A+ A corresponds to the Higgs self coupling in the SM. It turnstbat due to the
presence of a light Higgs the associated sector can bedrpatturbatively. We stress
that the expectation of a light composite Higgs relies oraetssumption that the quan-
tum chiral phase transition as function of number of flavaarthe nontrivial infrared
fixed point is smooth and possibly of second ortleFhe composite Higgs Lagrangian
is a low energy effective theory and higher dimensional afmes will also be phe-
nomenologically relevant.

The Non-Linearly Realized Effective Theory

One can always organize the low energy effective theory ieravative expansion.
The best way is to make use of the exponential map

JIexe
U= exXp <Zw> E 5 (2117)

wherell® represent the nine Goldstone bosons &fftl are the nine generators of
SU(4) that do not leave the vacuum invariant (see Appendix B forxpli@t real-
ization of the group generators). To introduce the eleati@winteractions, one simply
adopts the same covariant derivative used for the lineadlized effective theory, see
Egs. (2.106-2.113).

The associated non-linear effective Lagrangian reads

o (FTC)2

1
Tr [D,UD*UT| — §Ha(M§TC)“be : (2.118)

Still the mass squared matrix parametrizes our ignoranoatahe underlying ETC
dynamics.

A common ETC mass for all the pseudo Goldstone bosons cgrbgiryon number
can be provided by adding the following term to the previoagiangian

[§
20Ty [UBU'B| + C = % > TRy (2.119)
4(F7'r ) =1
with
B= % (g _0]1> . (2.120)

Dimensional analysis requir€s oc A% /A% ;.. A similar term can be added to the
linearly realized version of our theory.

It is straightforward to add the vector meson sector to thieseries, which would
then allow to repeat the analysis performed in Ref. [59].

5There are provided supporting arguments for this pictureh [49] where the reader will find also a
more general discussion of this issue and possible pitfalls
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2.3.4 Feynman Rules

Here we will explain the steps to derive the Feynman ruleskvhare presented in
Appendix C. We will use the linearly realized theory up to dimsion four operators.
First the covariant derivative is rewritten using the maaganalized vectors fields

igG = ig [T"WT + TTW~] +i—L 7 [T —sin®0,,Q] +ieAQ, (2.121)

cos 6,
with
T +iT? RS ¢
pro DA X0, (2.122)
V2 V2
Q=V2(S*+ys?) . (2.123)

The electric charge eigenstates of the Goldstone bosorgiene by Egs. (2.97-
2.99). Expanding now the kinetic term of the linear real@mabf the effective theory
(Eg. 2.91) there will arise trilinear and quartic couplings

A note on the notation is that we here UB” instead ofD D in order to emphasize
that derivatives act on the state and not on the firsjuark.

Here we will work in the unbroken phase, i.e. the electrongakmetry is still
unbroken, but it is straightforward to make the shift in thEWof the neutral Higgs
field.

Trilinear Couplings

—Zsect, (PP GuPP - VTGNt 4 VP GNP — o g1
25?6, ((1 — )PP GIIPP 4 (1 + )1V G,uv7

VP G P - ynﬁﬁinw)} zn (2.124)

e [(1 — )PP PP 4 (1 + y)IV 3,170

+ VPG nvP yHﬁEHUD} Ar (2.125)

_% {HDD‘E;HUT’ + VPG, 4+ VP g, (M0 + io)} wte o (2.126)

ol

[mPP P 4 VPG (i 1) GO W (2.127)
Quartic Couplings

In order to get the terms into this form, the identities of Apdix A.1 have been
used.

GPIIPPTIVU (7 +)? (2.128)
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GPIPPIIVY (W7 —)?2 (2.129)

igz {2 (HWHDD i oD T HWHUU)

HAIITPTIUD 4 62 (HO)Q} W (2.130)

(g% + ) [4 (HWHDD +HWHUU) 4 oTIVPTIVD 4 42 4 (11°)2
= %sinQ 0, {3 (0% + (I1°)?) + 10117 P1I"P
+TIPPIIPP (4 — o) + TIVUTIVY (4 + y)}
1 sin® ew{; (02 + (HO)Q) 4+ 5IIUPTIVD 4 SyQHﬁHUD
+2 (IPPIPP (4 = 5y + 4y%) + VU7V (4 4 5y + 4y?)) }} z
(2.131)

o2 [g (02 + (1)) + STIUPTIVD 4 8y 110DV P

+2 (HWHDD(AL ~ By 4+ 4dy?) + IUVTIVY (4 + 5y + 4y2)) } A2 (2.132)

gz sec B, [HUUHUD _ HDDHW

+ sin? 0{ —TU7NYP (y + 1) — I7PTIPP (y — 1)
1

+ 5P (I + o) }] Wiz (2.133)

gz sec B, [HUUHW i HﬁHUD

+ sin? 9w{ —TVVTIYP (y + 1) — IVPTIPD (y — 1)
1

+ §HU5 (11° — o) }] W, zZ" (2.134)

%eg {2 (HDDHW(y 1)+ VPV (y + 1)) — 1172 (11 + o) } WAk
(2.135)

%eg 2 (WPPIVP(y — 1) + 7PV (y 4 1)) = VP (10° — i) | W, A"
(2.136)



34 Technicolor

1 558 ) 7. J—
Je9sec 0w [02 + (1% + 611V PTIYP 4 4 (HDDHDD(2 _ ) +T0TTIUY (2 4+ y))
= 25in? 0, {o% + (I1°)* + 6117 P11VP 4+ 82110 P VP
+4(IPPIIPP (2 — 3y + 2¢%)

+TUUTIVY (2 4 3y + 292)) }] Z, Ak (2.137)

2.3.5 Minimal Coupling to Fermions

We now wish to give masses to ordinary fermions. There arenabeu of logi-
cal possibilities. The traditional way is to assume thataé terms emerge as four
fermion interactions generated by ETC at higher energieswil consider a minimal
approach and write down the simplest Yukawa couplings batveeir Higgs sector and
the SM fermions. Experimental deviations from our prediasiin this sector will teach
us about the underlying theory providing mass to all of trdérary fermions. Starting
with the leptonic sector one can define the following coluraaotar

VL
_ €L
L= e | (2.138)

s 2 %
—ZO'GR

ImagineL to transform under the same fdlU (4) flavor symmetry under which/ of
Eqg. (2.91) also transforms

L—gL. (2.139)

When gauging th&U (2);, subgroup we find the correct weak transformation of the
left-handed leptons. There is a subtle point to the hypegehamvariance which will
be discussed in a moment.

Now it is easy to construct afiU/ (4) invariant term

Liepton—sym = Yiepton LL M*Lge®® 4+ h.c. (2.140)

whereq, 8 are spin indices and/ is the matrix of Eq. (2.91). When the theory con-
denses, the following mass term is obtained

_Uweak}/iepton(ﬁRVL + éReL) +h.c.. (2141)
Because we have used a larger symmetry than is really olstsergerimentally, the
electron and neutrino masses are degenerate. Such largeesgpnis not present in the

SM and we need to break ti$47(2) z subgroup ofSU (4)

»Cleptonfasym = leeptonfDLgPDM*PDLﬁeaﬁ
+ Yiepton—u LY Py M* Py Lge®® + h.c. , (2.142)

where

1 0
Ppyu = (0 uys> . (2.143)
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If we were interested only in the mass terms this would havepteted our analysis.

In order to extract also interaction terms, one must be fatthhe hypercharge is con-
served by our Yukawa terms. Now the situation is a little niebicate. Considering

still just the leptonic sector, one finds the following triorenations

M — eio‘(_RBT"'\/éyS4)Mem(_R3+‘/§yS4T)
_ eia(—R3+\/§yS4)M€ioz(—R3+\/§yS4) :

L — eom=vashp (2.144)
The simplest possible Yukawa term will then transform like
LTM*L — [TemiaV2+D) $* ppe—ivV2w+) S (2.145)

and we see that the hypercharge paramebes to be-1 in order to make the Yukawa
invariant under hypercharge transformations. One catyazsivince oneself that this
is still true even when inserting the projection operatBfs; since they commute
with the hypercharge generator.

Following the same line for the quarks we obtain

ur,

_ dr

Q=1 b |- (2.146)
—ian*R

»Cquarkfasym = Yquark—D QZ:PDM*PD Qﬂeaﬁ
+ Yquark—UQgPUM*PU Q/}Gaﬁ + h.c.. (2147)

The quark vector transforms as follows under a hyperchaagesformation

0 em(-Rﬂ% s*)
So for the quarks, one would negd= 1/3 in order to keep the term invariant. This
is a priori in conflict with the result found in the leptoniccser. In principle it would
be possible to construct two different matridesand M/’ for each sector respectively.
But that would go beyond the minimal coupling idea we had indhin the first place.

Observing that the off-diagonalx 2 blocks in the matrix i.e. the technibaryonic
sector are the problem and the diagahal 2 blocks are just corresponding to the SM
Higgs sector we can strip away the technibaryonic sectdryanfind

ﬁmasses = Yquark—D QEPDMSHPD Qﬂeaﬁ + Yquarka QZ:PUM:HPU Qﬂeaﬁ
+ Yiepton—p L& Pp Mg Pp L3e®” + Yiepton—u L PuMig Py Le®” + hec.

Q. (2.148)

(2.149)
where
Mog =M — PLMP, — P,MP, , (2.150)
Py = diag(1,1,0,0), (2.151)
P, = diag(0,0,1,1) . (2.152)

Physically this means that the technibaryonic sector otlieery does not couple to
ordinary fermions via the Yukawa interactions in a minimgpeoach.
The Feynman rules fof,,,.sses Can be found in Appendix C.
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Y

Figure 2.10: Diagrams showing possible production of agdétechnibaryon, e.g. the
UD state in app experiment like the LHC. In (a)/ W fusion creates & which
decays to a technibaryon and an anti-technibaryon. In (b)ghotons couple to a
technibaryon.

2.3.6 Signatures

It interesting to consider how the model is significant atith&C (or later exper-
iments). Will it look exactly like the SM or another extensiof the SM or how is it
possible to distinguish it from the other extensions.

When modeling, there is always some freedom in choosing &nanpeters. A
crucial choice to make is if the technibaryon number is corestor if it is broken by
some ETC operators. Until now, and for the research done apth 3, we assume it
not to be broken. This is essential for the dark matter toigeitand be abundant at our
late time of the Universe. This choice has consequencestargmenology at collider
experiments, because the initial states in the experimesnb technibaryon number
and that will remain so. Pair production is the only option @ould be realized like
depicted in Fig. 2.10.

Another interesting point to th8U (2)-Adj. model is that it is a vector-like theory
with a light (composite) Higgs. This has been investigatedbrwekh in Ref. [59].
The interesting and somewhat surprising point is that tbescsection for Higgs pro-
duction is enhanced a lot (up to above 100% for a certain nfakg meutral technp)
compared to the SM Higgs cross section, by the presence tétheip.

A project which is in progress is to implement the model intocanputer pro-
gramme which is called MadGraph [61, 62]. The programmed®bwhich computes
all possible processes when given some initial states amé $ioal states and makes
corresponding programmes which uses HELAS [63] routindgenTa connected pro-
gramme called MadEvent is used to compute the phase spa&cgadlst for the cross
sections via a fast Monte Carlo method [61]. As mentioned ihiin progress and
the model is already implemented, but is still in the tesfihgse (which is the most
time-consuming). The trick with this programme is that itmqmutesa lot of diagrams
quickly to get cross sections of different processes, tad tiat the output of the pro-
gramme is compatible with event simulation software suclPé$HIA. With such
software at hand, it would be possible to get an idea of whigphedures would drown
in e.g. QCD background and which would not.



CHAPTER 3

Dark Matter

3.1 Introduction

The cosmological implications of explaining the dark mageblem and the dark
energy problem in particle physics has become a populatdédoirther constrain the
theory in question. We will here explain briefly what is darktter and what are the
observational evidences for its existence.

Here we consider the standard model of cosmology (with a digland inflation)
where it is observed that the Universe on large scales is bememus and isotropic.
Writing down the most generic space-time metric, the RaoerWalker metric

dr?

2 _ 32 p2
ds* = dt* ~ R*(t) | ;=7

+ 7% (d6® +sin® 0 d¢?) | (3.1)

two quantities are included, which are the cosmologicdksizactor R(¢) and the cur-

vature constant. By rescaling- there are three different valuéscan take on}, —1

or 0, which corresponds to a closed, an open and a flat Univergmecavely.
Starting by the Einstein equations

1
R;w - §gle = 87TGNT/LV + Aglw ) (32)
whereR,,, is the Ricci tensor,,, is the metricR is the Ricci scalais v is the Newton
constant,, is the energy-momentum tensor afids a cosmological constant. Then
it is common to assume that the matter in the Universe camad gpproximation, be
described by a perfect fluid which gives the following enenggmentum tensor

T;w = —PYuv + (p + p)uuuu y (33)

wherep is the pressurep the energy density and the velocity in co-moving coordi-
nates. This leads to the Friedmann-Lemaitre equations

R? 81Gnp k A R A 4AnGy
=— = - —+ = d = =—-- 34
B 3 mty ad 4 3 5 (pT3p), (34
where H (t) is the Hubble parameter. The Friedmann equation can theaviréten
into the following form

H2

(Q-DH® = =, (3.5)
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Figure 3.1: Synthetic rotation curve for galaxies Wiff;) = —21.2 , where(M7) is

a measure for the luminositg/ R.ps is the distance measured from the center of the
galaxy normalized by the optical radius a¥ids the velocity. The figure is taken from
Ref. [6].

where(Q is the total “energy” i.e. matter plus vacuum energy or cdsgioal constant
and it is defined via the critical density

o=_7" (3.6)

bl
Pcritical

where the critical density,.itica1 Would render the Universe geometrically flat. We
can write
Q=0Qp + 02 =0+ Qam + Qn, (3.7)

whereQ) = Q,,; is the total energy densit(),,, is the matter density), is the density
associated with the cosmological constant teim,is the density of the baryonQ,,,,
is the density of the dark matter, and all the energy dessitie in units of the critical
density. As it is seen from the equation, the matter densitg sum of the baryon
density and the dark matter density, which we will argue next

One of the direct observational evidences of dark matteousid on the scale of
galactic halos where there is observed flatness in the oatatirves of the spiral galax-
ies, see Fig. 3.1. On these large scales one would expedhthgtavitational field
is undisturbed by the small masses far apart and thus Neavtagravity would hold,
giving

M(r) < v*r/Gy , (3.8)

where M is the mass of the galaxy (in the center)is the velocity,r the distance
measured from the center of the galaxy &g is Newton’s constant. This of course
assumes that the galaxies are in virial equilibrium. Ther@ghows a compilation of
almost 1000 rotation curves of spiral galaxies restrioteanarrow range in brightness
characteristic for a lot of spiral galaxies. Eq. (3.8) imglthat outside the bulk of the
galaxy the velocity should go as

voc 1/y/r, (3.9

which is not what is seen in Fig. 3.1. On the contrarnr constant outside the bulk,
which implies thatM « r , outside where there is no light. Dark matter has also been
confirmed in elliptical galaxies, see Refs. [64, 65].
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Figure 3.2: Power in the CMB anisotropy spectrum measured/MAP and others.
The figure is taken from Ref. [7].

There has also been great development in the determindttbe enatter and cos-
mological densities. One of the tools are the Cosmic MickanBackground (CMB)
anisotropy experiments which have made estimates of thatue with uncertainties
down to the few percent level. In fact, the CMB was a predictibthe big bang nucle-
osynthesis (BBN). The argument goes like this. The minimemgerature for which
the BBN can function, relates via the standard model tinmeperature relation, to the
maximum time scale. Together with the typical cross sediwrihe first link in the
nucleosynthesis chain one can compute the necessaryydésitving the density of
baryonic matter and that the density scales like® ~ T3, the temperature today is

found to be~ 10 K.
A lot of information is encoded into the angular expansiothefCMB temperature

T(0,6) =D aimYim(0,9), (3.10)
Im

where the monopole term characterizes the mean tempeddtire CMB. It has been
determined by the COBE satellite to 25 4+ 0.002 K [66]. The dipole term can be
found from the Doppler shift produced by our peculiar motioth respect to the CMB.
Higher order multipoles contain information about the g@yedensity perturbations
in the early Universe. The power spectrum has been measpréau~ 2000, see
Fig. 3.2. The values from a fit of the WMAP data to th€ DM model [8] are shown
in Table 3.1. The fit of2, from the WMAP data give8.75815-03> which renders the
total energy budget close to one [8]. In fact, the fits are ssecto one, that it is not
possible to tell whether the curvature constaig negative or positive. It is seen from

1The ACDM model means a model with a cold dark matter candidate arasmological constant, on
top of the standard inflationary scenario.



40 Dark Matter

Table 3.1: Fitted parameters from WMAP data [8].
WMAP three year mean
100Qzh% | 2.23+0.08

O, h? 0.12640.009

Hy T4+3
T 0.093+0.029
Ng 0.961+£0.017

Fig. 3.3 that the WMAP data prefers an almost flat Universe mkiaing the WMAP
data with the data from supernovae (SNe) observations (ithé/epanel in Fig. 3.3) it
is seen that the matter density~s0.3 and the total density is' 1 (the black straight
lineis2 = 1). Itis also noticed that the matter density is far greatanth 0.04 which
is shown in Table 3.1. This is one of the indications thatetisrmore matter than is
visible. A notion commonly used, is the following measureried-shift

1+z=22 (3.11)

where )\ is the detected wavelength and is the emitted wavelength. One of the
advantages with the SNe measurements are the-higimalysis which leads to a good
test of the cosmological geometry, thdsandk [67].

Theoretically there is support for the fact that more enésgyresent in the Uni-
verse than what is observed as baryonic matter. The infltysstenario suggests that
Quot ~ 1 [68]. The following simple solution to the curvature pramleshows why
Q01 IS expected to be so close to unity. At present point we do notkif Q. is
smaller or greater than one and thus not the sign of the ainevabnstant. This is be-
cause that the curvature termin Eq. (3.4) is subdominamia Fadiation dominated gas
we haveR ~ T—! . Assuming now an adiabatically expanding Universe, thetjitya

= F =(Q —1)1LI—§<2><10*58 (3.12)
B ’ '

is dimensionless and a constant (and the subscripts retbetpresent-day values).
This constant would be expected to be of order one, but itite dar off, which is a
kind of a hierarchy problem. This problem is called the ctuwa problem and one
way to deal with this is by inflation. Denote Wy = R;, T' = T; the initial values and
R; ~ T[l . During inflation, we haveR ~ ef* | with H constant. After the inflation
R > R; andT = Tr < T; with Ty the reheating temperature. This implig§
andk are not constants ard — 0. Butif & — 0 = Qx — 1. As the inflation is
exponential(),; becomes exponentially close to unity.

By the use of BBN calculations it is possible to deternfingfrom the abundances
of D, *He, and'Li, and not surprisingly it gives values comparable to thoidhe CMB
anisotropy analysis.

Finally evidence for dark matter is found from gravitatibtensing [69]. Sys-
tematic lensing of about 150,000 galaxies per degree ahifesls = 1 — 3 makes
it possible to estimate the matter distribution in the fooegd cluster. The lensing is
usually categorized into strong lensing and weak lensimigoath seem consistent with
the existence of dark matter.

The problem left is to predict what constitutes this darkteratvhat type of parti-
cles/objects they are and how do they behave? There areaguitmber of candidates;
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Figure 3.3: Phase space @1,,,, 2x) with WMAP and additional data. The figure is
taken from Ref. [8].
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baryonic particles, hydrogen, Jupiter-like objects what$o are called massive com-
pact halo objects (MACHOSs), remnants of massive starskiilates, neutrinos, heavy
neutrino-like objects which are in the class of weakly iatd#ing massive particles
(WIMPs), axions, and finally also technibaryonic types whiee will consider in the
next section.

It is quite involved to consider all of the candidates forldaratter in depth and
we will thus refer to the literature. It is however useful taokv that strong limits are
coming up on the different types of dark matter (we will latensider some detection
limits for WIMPs). For example the MACHOs are testable viawtational lensing
of stars in a neighboring galaxy e.g. the LMC. This puts camsts on the amount of
MACHO the Universe can have and it is found that MACHOs carmal up the whole
dark matter amount but only a fraction. Neutrinos have Brodming from supernovae
type la data and the HST Key project data as well as from BBN.MhAss is restricted
to be either very small or quite heavy in order to be a viabkk daatter candidate. If
the mass is small it is a so-called hot dark matter candiddte.problem with the hot
dark matter is that it reacts too much and will smear out thecsire formation at large
scales [70]. Thus cold dark matter (CDM) candidates who ssermed to cluster are
considered more viable.

For further reading we refer to Refs. [71, 72, 73, 68].

3.2 Computing the LTB Relic Density.

We are now considering thel/ (2)-Adj. technicolor model of Section 2.3 and then
explicitly compute theD D-type boson relic density in the case where it is neutral and
stable (i.,ey = 1). We will use in the computations, the assumption of thereagaii-
librium and overall electric neutrality, as well as the cemvgd technibaryon quantum
number.

In the next section we will take into account the experimklirigits from earth
based dark matter search experiments and figure out whatislib density, in percent
of the measured dark matter density, and what the mass ofttielp will be.

Finally, we will in the last section of this chapter specalabw good is the assump-
tion of thermal equilibrium.

We impose thermal equilibrium and overall electric neitlydbr the matter in the
Universe. Imposing overall electrical neutrality avoitie thuge energetic Coulomb
costs due to electric fields of the otherwise uncanceledgelsain the Universe. In
addition to the theoretical reasons, observations confirmvarall neutrality. Thermal
equilibrium occurs among different particles as long adrtrege of interactionl” is
much larger than the expansion rate of the UnivéfserhereH is the Hubble constant.
If H > T at a given time, the particles decouple from each other andéhean no
longer be in thermal equilibrium.

At some energy scale higher than the electroweak one, fuwitpthie work of Nussi-
nov [74], we assume the existence of a mechanism leadingetchaibaryon asymme-
try in the Universe. Given that the technibaryon and baryanioer have a very similar
nature such an asymmetry is very plausible and can have a corarigin. Here we
will not speculate further on the origin of the (techni)bamasymmetry, but will relate
it to the observed baryon asymmetry as done by Nussinov dsawel Ref. [75].

Even if one is able to produce an asymmetry above or arourel¢aroweak scale,
the (techni)baryon number is spoiled by quantum anomdfiegunately, although the
baryon (B), technibaryonT'B), lepton (L) number and the new lepton number for the
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SU(2)

Figure 3.4: Triangle diagram giving rise to the anomaly thiataks e.g. the baryon
number or the lepton number foe= B, L respectively. The two bosons are the gauge
bosons of theSU(2);, group. The particles looping in the triangle are left-hahde
particles with charge

new lepton family {’), are not conserved individually, their differences, é8g— L
and37T' B — L are preserved.

This is seen from the contributions of the triangle diagrainthe type shown in
Fig. 3.4. For thd/ (1) 5 of the baryon number the diagram is proportional to

1
Ty~ g NN , (3.13)

where the fraction /3 is the baryon number of a single quark, is number of number
of generations in the SM anil,. is the number of colors. For the leptons we have

Y, ~N,, (3.14)

where the lepton number is unity. In order to construct a eovegl current, one simply
subtracts the two anomalous currents

(Tl =T =0, (3.15)

and the conserved quantum numbeBis- L , whereB = B + By + B3 andL =
Le+L,+L,.

This is all well known, but it is useful to see explicitly wheanstructing the new
conserved quantum numbers. For the technibaryons, theaypoontribution reads

thc(Ntc + ]-)

3 5 =1 for Ny =2, (3.16)

YTrp ~
whereN,. is the number of technicolors/3 is the technibaryon number per techni-
quark and the remaining factor is the number of colors in4b&2)-Adj. model. For
the new lepton family we assign the quantum numbleand the anomaly contribution
is

T ~1, (3.17)

where unity has been assigned to a single new lepton. Byremtisig conserved cur-
rents with the new constituents in the model we can make assefi‘good” quantum
numbers (fotV, = 3)

B-1L, 3TB-L, 3L — L, (3.18)
TB-L', B-3L, 3TB-B. (3.19)

These quantum numbers are very useful to have in mind whestromiting the sphaleron
process later.
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The fact that bottB — L and37' B — L are conserved allows for a nonzero (techni)-
baryonic asymmetry to survive. The process leading to aatim of B + L and
3T B + L, but conservation of the above quantum numbers, is termegplaateron”
process and is at the present time negligible. However thisgss was active during the
time the Universe had a temperature above or at the scale efaébtroweak symmetry
breaking ¢ 250 GeV). Indeed this process was rapid enough to thermalizgbar
leptons and technibaryons. At some point as the Universaredgand its temperature
falls, the baryon-lepton-technibaryon number violatinggess ceases to be significant.
The precise value of this temperatufé depends on the underlying theory driving
electroweak symmetry breaking. Within the SM framework assuming the validity
of the semi-classical calculation of the tunneling eff@@][ 7 has been estimated by
equating the rate of the sphaleron procesg/toAccording to Ref. [76],1* satisfies
the following equation

T = %B (). (3.20)

Qy In ( T Qly

where My, is the mass of théV bosons,M p; is the Planck scaley,, is the weak
coupling constant) is the self coupling of the Higgs boson aBd\ /«yy ) is a function
that takes on values from 1.5 to 2.7 as the ratio.;y goes from zero to infinity [76,
77]. As we already mentioned, this formula is an approxioraéind it depends on the
not very well known ratio of\/ay . According to what is the value of this rati®}*

can vary within thel 50 — 250 GeV range. In technicolor theories, since the Higgs is a
composite object, the self-couplings in principle calculable. An estimation= 1/8

for our specific model was given in Ref. [49]. Sineg, = 1/29 (or a bit smaller at
the electroweak scale), the rafigayy gives al™* around200 GeV.

Now it is time to introduce the chemical potentials for thievant particle species.
We here follow Ref. [78]

Hw for W~— HdL for dr,sr,br
140 for ¢° HdR for dgr,sr,br
. for ¢~ Wil for er,pur, 7L
HulL for wp,cr,tr HiR for er,ur,Tr
pur  for wug,cr,tr HuiR for ver,Vur,Vrr
Huil, for ver,vur,v-L

where the indiced. and R denote chirality. We have a common chemical potential
for the up, charm and top quarks, and a different one for theratriplet of down,
strange and bottom. A common chemical potential has to do thi fact that at the
scale of interest, QCD interactions put quarks of the sanaegehon equal footing.
We introduce a different chemical potential for all of thetlens. Also in order to be
as general as possible we have assumed the existence ohaigtiéd neutrinos and
introduced different chemical potentials for the left ahd tight handed particles. The
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thermal equilibrium conditions associated to the weakradgons read

pw = p— + o (W™ = ¢~ +¢°), (3.21)
fdr = pur + pw (W™ —a,+dyr) , (3.22)
Wil = flwiL + HW (W™ < vip +eir) , (3.23)
HuiR = HuiL + Ho (¢° < 7L + Vi) (3.24)
HuR = Ho + HuL (¢°  ur +ug), (3.25)
HdRr = —fio + AW + HuL (¢° — dp +dg), (3.26)
WirR = —Ho + fiw + HuiL (¢° < eiL + €ir) (3.27)

where it is understood that the Higgs is a composite of twhrtepiarks. The Gold-

stone bosons of Eq. (2.88) are gauged under the weak symaretrigence we intro-

duce the following chemical potential for these Goldstoosdms and the new lepton
family of Eq. (2.64)

HeL for (g wuu for UU

HCR for (gr WUD for UD
'L for wver UDD for DD
U R for wver

The corresponding thermal equilibrium equations for thieeeparticles introduced by
the technicolor theory per se are

Her = pw + furr CLeW+ver),  (3.28)
HUD = DD — HwW (DD <UD +W7), (3.29)
HWUU = BUD — Pw = DD — 2uw (UD—-UU+W7), (3.30)
HeR = —fo + [¢L (¢° < ¢ +CR), (3.31)
PR = o + fu' L (¢° — e + ver) (3.32)

where Eq. (3.29) has been used in Eq. (3.30).

Each classical gauge and scalar field configuration withegigpological number
leads to a simultaneous jump fall of the anomalous charges. Hence each quark-
doublet generation, lepton-doublet generation, the ngtotefamily number as well
as techniquark number are violated by the same classicdldigifiguration. The one
loop anomalous coefficient dictates the relative amourti®jump for each anomalous
charge when turning on a given classical field configuration.

With the normalization ol /3 for the technibaryonic charge for our techniquarks
and1/3 for the ordinary quark-baryonic charge of the quark&r all of the leptons,
the simplest classical configuration with one unit of togidal charge will induce a
transition from the vacuum of the theory to a state contagittimee baryons (per each
generation), one lepton (for each generation), a techydmalike object with three
technibaryons and one new lepton. The explicit constraaticthe sphaleron process
is

Vacuum =
3
H (€ff€f Y Ga'bchfw?,f¢f7f'li,f’) X (foef f GABCQ?Q?Q?"CJ‘T/) ) (333)

=1
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wherey are SM quarks, SM leptons Q) techniquarksf the new leptons, the product
is over the SM generations witha generation indexf, f SU(2), indices taking on
values which are either the first or the second constituesu U (2) ;, doublet,a, b, ¢
are QCD-color indices and finally, B, C' are technicolor adjoint indices. We see that
it is necessary to have three techniquarks in the sphalewmesgs in order to have a
weak charge neutral and in the same time a electric chargeahebject. Thus the
technibaryon number is defined B&3 per techniquark even though the technibaryonic
sector will consist of only two techniquarks.

The relation among the chemical potentials emerging fraeratbove is

3(fuy + 2pa,) + p+ %MUU +ppp 4+ =0. (3.34)

The parametet is defined a3, 11,;1, = 1. We have assumed that the difference in the
baryon number between two different quark-doublet germrais created identically
before the electroweak phase transition. A similar retatidll be assumed for the
lepton charges. Note that the difference is not affectedhbyeak anomaly and hence
will not be generated later on.

We can now turn to the calculation of number densities. THfergince between
the number densities of particles and their corresponditigarticles is given by

dk 1 d3k 1
nenene = [ Gy o G 9

wheren, andn_ are the number densities of the particles and antipartiobspec-
tively. The constany is the multiplicity of the degrees of freedom (spin for exaep
8 =1/Tinunitskp = 1, andn takes on the valuelsand—1 for bosons and fermions,
respectively. The fugacity = ¢*# andE is the energy. The ratig /7 is sufficiently
small in the Universe, that we can Taylor expand the abowatiogl. The number den-
sity now can be written as

(3.36)

. gT3L.7 (%) for fermions,
gT3L% (2) for bosons

where the functions” and¥ are defined as follows
1 > 1
F(z) = F/ dx % cosh™ (5\/ 2+ z2> , (3.37)
™ Jo
Y(z) ! / dx 2° sinh > <%\/ x? + 22) . (3.38)
0

T an?

We now differentiate two cases according to the order of teetemweak phase tran-
sition. In the case of a second order or weak first order eleetak phase transition
we expect that the temperatuf& is below the temperature of the phase transition.
This means that the baryon, lepton and technibaryon vi@agtrocess persists after
the phase transition. The second possibility is to haveomgtfirst order phase transi-
tion where the violating process freezes right at the phasesition. We are going to
examine separately the two different cases.

Assuming that the violating process persists even aftglthse transition, we need
to impose two conditions: Electric neutrality and thgt= 0, since the Higgs boson
condenses and the electroweak symmetry breaks sponténeBegall that we can
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introduce a nonzero chemical potential only for unbrokenmetries whose generators
commute with all of the gauge ones. Here the Higgs boson igrgosite particle,
made of techni-up and techni-down quaiksU + DD)/+/2. Therefore when we
refer touo as the chemical potential, we mean the chemical potentileofomposite
object.

From Eg. (3.36) we see that the number densities, in therigagiproximation, are
linear in the chemical potential for smalJ'T". For convenience we express the baryon
number density as

_nB—np

=776
We shall use the same normalization (dividing the numbesitieby ¢7°2/6) also for
the lepton number, technibaryon number etc. Since in thenendnly care for ratios
of number densities, the normalization constant cancels ou

We conveniently define the functienas follows

- 6.7 () for fermions,
" 169 (&) for bosons

(3.39)

(3.40)

where.# and¥ are those of Eq. (3.37) and (3.38), respectively and thexindefers
to the particle in question.

For all of the SM particles, the statistical function is take be 1 and 2 for massless
fermions and bosons, respectively, except for the top qwaikh we treat massive, as
my is of orderT™*. The reason why we can take the other SM particles to be nsassle
in the statistical function is that: < T7*. However, the technibaryons as well as
the particles of the new lepton family have masses that démanored. We should
emphasize that we calculate the baryon and lepton numbehe demperaturd™
where the sphaleron dies out.

The baryon density can be written as

3
B = 3 (2 + 0¢)(ptur + pur) + 3(par + par)]

= (10 + 20¢)ptur + 6pw + (0t — L)po (3.41)
where Egs. (3.22), (3.25) and (3.26) have been used and ¢ha fa the first line
includes number of colors and the baryon number of each qudrich is1/3. The
factor 3 of the down-type quarks is the number of families egdivalently the factor
2 + o, is the number of families taking into account the top massogff

Similarly the lepton number for the SM leptons is

L= Z(MWL + fwir + Wi + HiR)

=4p+ 6w . (3.42)
For the new lepton family we have
L' =oc(pcr + per) + 0w (pvrn + prr)
=2(0 + o) + 20¢piw + (00 — o) o - (3.43)
Similarly for the technibaryons we get

2
TB = g(UUUMUU +ouppup + OpDHUDD)

2
= g(UUU +oup +0pD)DD — g(UUD + 2000w - (3.44)
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The charge constraint for all the particles is

2

1
Q=332+ 0)(uur + pur) = 33 3(nar + par)

- Z(ML + Hir) — 2 2uw — 2u—

3

+ 20pvpvr + ouppup — 20¢(er + ter) — our (o r, + prr) . (3.45)

For the first order phase transition we will need also the nadityt with respect to the
weak isospin charge which is

3
3(24 0y) 3-3 1
Qs = T g HulL T 5 HdL + 3 Z(Mm:L — pir) — dpw — (po + p—)
=1
1
+ (cvvpvu — oppppD) + §(UV/MVIL —oclicr) - (3.46)

The need for the isospin neutrality condition, in the firgtercase, comes from the fact
that we are computing our final relic densities above theteeeak phase transition
where the weak isospin is unbroken.

Since itis not clear whether the electroweak phase tranggifirst or second order,
we should examine both cases. It is expected as in Ref. [#8latistrong first order
phase transition occurs fast enough to “freeze” the baryahntechnibaryon violating
process just at the transition. In this case one calculaefquilibrium conditions
just before the transition. On the other hand, in a secondrgsbase transition we
expect the violating process to persist below the phassitiam and the equilibrium
conditions are imposed after the phase transition. If thespldiagram as function of
temperature and density of our technicolor theory wouldfi@kn, a specific order of
the electroweak phase transition would be used.

When the ratio between the number densities of the techyobarto the baryons

is determined, we have

Qrp  3TBmrrs
TIE _ 222 3.47
QB 2 B myp ’ ( )

heremrp is the mass of the LTB (thevpp) andm,, is the mass of the proton.
Note that a possible mixing between the new family and annargi SM family
would dilute the relative,. abundance and eventually annihildte.

3.2.1 2nd Order Phase Transition

Here the two conditions we have to impose are: Overall egadtneutrality and
o = 0 for the chemical potential of the Higgs boson. The ratio leemthe number
density of the technibaryons to the baryons can be expressédhction of thel. /B
andL’/ B ratios. In order to provide a simple and compact expressiergonsider the
limiting case in which thé/U andU D technibaryons are substantially heavier than the
DD companion, the top is light with respect to the electroweakse transition tem-
perature and the new lepton family is degenerategie= o,/. In this approximation
the ratio simplifies to

TB
= P2 (17+40,)+

B (21 +o,)
B 3(18 + 0,1)

L (9+50,) L'
3 B

—5| - G49)

L2
3
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Phase plot for various T* - second order PT
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Figure 3.5: Plot representing the region of the parametecsrding to which the
fraction of technibaryon matter density over the baryome dakes on the values
[3.23, 5.55]. We consider here a second order phase transition. The ptestin

the plot are the mass of the LTB dark matter particle araf Eq. (3.49). The plot
includes various values df*. The dotted line separates areas of abundant particles
and anti-particles.

The results of the calculation are summarized in Fig. 3.5is Tigure shows what
are the allowed values of the paramegatefined below, as a function of the mass of
the LTB, for a givenT™, if the LTB accounts for the whole dark matter density of
the Universe. The parametgican be considered, roughly speaking, as the total ratio
of lepton over baryon number density, with the new leptonifamumber densityl’
weighted “appropriately” due to the large mass thaand( carry.

For convenience, with respect to plotting the results, windehe following pa-

rameter
L 2 9450, L'

=4 2Ty 4
¢ B+al,/ 21 +o0, B (3.49)
With this definition at hand the ratio of technibaryons toymsas reads
TB OpD (21 + UV/)
——=—1(1 )+ —2E . 3.50
B a8ty Mot T8 (3.50)

From Fig. 3.5 we see for example that/if = 0 (no new leptons present) while also
havingL/B = —4, we need a mass for the LTB somewhere between 1.1 to 2.2 TeV,
according to what is the freeze out temperatiite We should emphasize that there
are two branches of allowed values fgrseparated by the dotted horizontal line. The
lower branch, as for example the one we just described gvith—4, corresponds to
a relic density made by technibaryobdD. The upper set of allowed values, (as for
& = 2), corresponds to th® D antiparticle.

In Fig. 3.6 we show the dependence of the neutral technilbamettter density as
a function of its mass for a fixed value of the paramétaie see that if the LTB mass
is lighter than roughly a TeV, the density of the particlevésy large, giving a too
large ratioQrp/Qp. So, for a given value of andT*, WMAP data put constraints
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on the allowed mass of the technibaryon. On the other hand iharease sufficiently
the mass of the technibaryon, we can get a ratio less tharw#hibh means that the
technibaryon can be a component of the dark matter density.

3.2.2 1st Order Phase Transition

If the electroweak phase transition is predicted to be ob(gf) first order, then the
baryon, lepton and technibaryon violating process “fregaéightly above the phase
transition. For this reason, we have to impose two condititime overall charge neu-
trality @ = 0 and@s = 0, where@s is the charge associated with tiig isospin
generator of the weak interactions. This charge has to lodssrause, above the phase
transition, the electroweak symmetry is not broken andetloee s = 0 in the Uni-
verse.

The technibaryon over baryon number density ratio is, insrae approximation
as was used for the second order phase transition

= 3 .
B~ "PP9@ 12000 t00) | B oy B

TB 22 + oy L 1
to { ] . (3.51)

T* is expected to be larger than that of the second order casi should be identified
with the critical temperaturgc of the electroweak phase transition. This fact forces
the mass of the LTB to be larger than that of the second ordertcadescribe the whole
dark matter. Our results are summarized in Fig. 3.7. As irc#se of the second order
phase transition, we have plotted the allowed values ofttharameter as function
of the LTB mass, under the WMAP constraints regarding thealvdensity of dark
matter in the Universg; is, however, slightly different in this case

L 1
== —. 3.52
(=gt P (3.52)
Using the previous example &f = 0 andL/B = —4, one obtains an LTB mass of

around 2.2 TeV.

3.3 Detection of the Neutral Technibaryon

Apart from the possibility of detecting a technibaryon ig.ehe LHC experiment
it would certainly be interesting to detect the neutral tabhryon in earth based ex-
periments for dark matter searches such as the CDMS [79,18@28. There are two
basic ingredients affecting the detection of a cold DM obiecthese kinds of experi-
ments. The first one is how large is the cross section of thecobp be observed with
the matter in the detector. The second has to do with the tteoadity of DM in general
and of the specific component of DM in particular. Currenineates suggest that the
local density for a single component should be somewhexedsst 0.2-0.4 GeV/ch
It is evident that the higher the cross section and the loeasitly of dark matter are,
the larger are the chances for the detection of the partihee CDMS collaboration
for example, can identify WIMPs by observing the recoil gygproduced in elastic
scattering between the WIMP and a nucleus in the detectoe ekpected rates of
events per unit time and mass of the detector, has beenatdduh several places and
we refer to the review paper by Lewin and Smith [83] for a costpllist of relevant
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Amount of LTB dark matter as function of LTB mass withL'=0,L=B
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Figure 3.6: Amount of LTB dark matter as function of the makthe LTB particle.
The plot is shown foi.’ = 0 andL = B, for second order (SO) phase transitions with
various temperaturés* and a for first order (FO) phase transition as well.
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Figure 3.7: Plot representing the region of the parametecsrding to which the
fraction of technibaryon matter density over the baryome dakes on the values
[3.23, 5.55]. Here we consider the case of a first order phase transitiomp@rameters
in the plot are the mass of the LTB dark matter particle @aoflEq. (3.52). The dotted
line separates areas of abundant particles and antidgartic
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references. The number of counts reported by the detectarmjiietime, mass of the
detector and recoil energy is

dR _ Ry _1/p,

T o (3.53)

whereT is the recoil energy of the nucleusy is the kinetic energy of the WIMP and

r = 4mM,,/(m + M,)?, m andM,, being the masses of the WIMP and the nucleus,
respectively. The paramet&; is the total rate containing the information about the
cross section and is given by

Ro = ——;Uovo s (354)
m

whereN is the Avogadro numbeH is the atomic number of the nucleus of the detec-
tor, pam is the local dark matter densityy is the cross section for an elastic collision
between the WIMP and the nucleus ands the thermal velocity of the WIMPs. One
should note here that Eq. (3.53) is an approximate expressioeality the calculation

is more elaborate. For example, in principle one has to assuMaxwell distribution
for the velocities of the WIMPs up to the escape velocity for galaxy. In addition,
the effect of the motion of the earth relatively to the halowd be considered. These
factors can change the expected rate. The total rate of s@amt be more usefully
rewritten in convenient units as

503 [ oo Pdm Vo GeV?
= — . 3.55
Ro M, m <1pb> (O.4Gchm—3) <230kms_1) kg.days ( )

Since our prospective dark matter component is a Goldstosery we are inter-
ested only in the spin independent elastic cross sectiois iFlgiven in natural units
by Ref. [84]

G% 5o
o0 = —Lu?Y?N2F? | (3.56)
2w
whereGr is the Fermi constant arid = 2Y. For a Dirac fermioit” = Y7, + Yz and
w is the reduced mass of the WIMP and the nucleus target.

N=N—(1-4sin’6,)7, (3.57)

whereN andZ are the number of neutrons and protons in the target nuctel,ais
the Weinberg angle. The parameketis a form factor (squared) for the target nucleus.
The cross section can be written as

-3 w 2 N2 2
oo = 8.431 x 10 GeVQY N*F“pb. (3.58)
The Ge atom has 41 neutrons and 32 protons, givingias 38.59. Our LTB has
Y = 1.2 Since SM neutrinos havE = 1/2, the cross section for the technibaryon
will be four times larger than the one corresponding to a Weautrino. As we already
mentioned, for typical values of thie/ B ratio, in order to get the entire density for the
dark matter, the mass of the technibaryon should be of therafa TeV. The form

2We have directly computed this value for using the effective Lagrangian in Ref. [1]. For a geneyic
we haveY = 2y — 1 and it coincides with the value, one deduces by construtiied TB wave function as
follows: v/2| LTB) = | DL Dr) — | DrRDR) .
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factor F2 for the nucleus of Ge depends on the recoil endigyt models the loss of
coherence of the scattering for large recoil energies. Yjucal values of the recoil
energy around 20-50 keV, one expegtsto be around).58. We estimated the nuclear
form factorF" using the solid sphere approximatierproper for the spin-independent
WIMP interaction— which can be found in Ref. [83]. The solid sphere approxiorati
reads

3 (sin(gry,) — qry cos(qry))

F2(qry) = , 3.59
(4r2) = (359)
where
AT
— -3 -1
q=06.92 x 10774/ v fm™" | (3.60)
P~ 1.14AY3 fm | (3.61)

with 7" the recoil energy and the atomic number. This implies that the nuclear form
factor ranges frond.72 to 0.43 when the recoil energy ranges from 20 to 50 k&V.
The number of counts that are detectable is given by

dR
counts = 1T AT x 1, (3.62)
wherer is the exposure of the detector measured in kg.days/dfids the energy
resolution of the detector. In the CDMS experiment, a 19.4&gs exposure was
achieved for the Ge detectors with an energy resolutioA’6f= 1.5 keV. So far no
counts have been found. The% level of confidence would lead to 2.3 counts.

If we assume that our LTB constitutes the entire DM in the dree, we have seen
from our previous computations, that a typical value of tteesgis about 2 TeV, for the
second order phase transition case. Taking a recoil eneogyd 50 keVpg,, = 0.3
GeVicn? and F? ~ 0.43, the number of counts predicted is around 13 which is a
value few times larger than the 90% confidence value preddr@ore. By stretching
the parameters we can reduce, or even annihilate the gapedebur prediction and
experimental bounds. Using still a mass around 2 TeV, bubsing a different set of
inputs, i.e.p4m = 0.1 GeVicn?, F2 ~ 0.3 andT = 70 keV, one finds around two
predicted counts. Hence we would be within the 90% confidésed. Under these
rather extreme conditions, one cannot yet completely ebecthe possibility that our
WIMP can constitute the entire DM in our Universe. Anothenie way to reduce the
gap between experiment and our LTB particle, if we imagirte tbe a component of
DM, is to increase its mass. In doing so, however, we nedhecte¢levant information
gained in the previous sections in which we related the miied TB to the fraction
of DM in the Universe, it can account for.

We now take into account, in a more careful way, such a depered®n the mass of
the LTB. From the previous section we learned that the gétreral is that the amount
of DM saturated by our LTB object decreases when increasiagrass of the LTB.
In the absence of a complete computation of how DM distribitgelf in the Universe
we make the oversimplifying assumption that the fractiotool DM density of our
LTB follows the same fraction of DM in the Universe. At thisippwe impose the
90% experimental constraint. Our results are reportedgn3=8. In the figure we have
usedF? ~ 0.43 and the thermal velocity i830 km/s. We present both the maximal

3We may have overestimated the nuclear form factor [80]. dfghysical value of? is lower than the
one we used then the allowed fraction of LTB-DM increases.
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Fraction of LTB DM for second order PT with T* = 250GeV
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Figure 3.8: Top Panel The maximal fraction of local DM density allowed by the
90% experimental constraint as function of the local DM dtgrend the parameter
¢ of Eq. (3.49).Bottom Panel For the corresponding maximal fraction of local DM
density currently allowed by the 90% experimental constras function of the local
DM density ands, we plot the associated LTB mass. Both plots are presentidavi
second order phase transition withh = 250 GeV and a recoil enerd¥/ = 50 keV.
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fraction of local DM density determined imposing the 90% exiymental constraint
(Fig. 3.8) and the associated value of the LTB mass as furstié. We have allowed
for variations of the parameters to make our analysis mamgbete. Note that we have
allowed the local DM density to reach, in the plots, very éavglues although a more
modest range (i.e. up to 0.4 GeV/&nis probably sufficient.

Summarizing we can say that for reasonable values of the jpgmameters, the
90% experimental constraint allows for a 10% to 65% of LTB-Bmponent in the
Universe. The allowed mass for our dark matter componegeasbetween 1.4 and 3.3
TeV depending on the order of the associated electroweadephansition as well as
the exact value of the local DM density and the range of theergental parameters.

Another interesting exercise one can do is to consider hoshnmore the model
is ruled out, so to speak, if the experiment enhances theewgit by being able to
measure lower recoil energies. It is clear that the difféaénate with respect to the
recoil energy of Eq. (3.53) is exponentially dependent @r#coil energy. So the first
naive answer is that it makes life exponentially harder ier mnodel in question. But
combining all the information we have gathered at this piiigt also known that the
fraction of DM drops exponentially as function of mass. Witis at hand we make
the full analysis and show the result of the mass of the LTB thedraction of LTB
DM, as function of the recoil energy which is measurable i éixperiment and the
& parameter, in Fig. 3.9. As seen from the figure, the fractiosaok matter the LTB
particle can constitute, with an experiment having medsargecoil energy down to
10 keV, is less than 10%, but the corresponding masses areatdatifferent (heavier).
It is then, as expected, a point in the experimental resaghatireally can make life
hard for model builders.

We have now shown that in any case it is possible that the LTB miatter particle
only constitutes a fraction of the observed dark matter. dinestion to be answered
at this point is: What makes the rest of the DM in the Univer§g€ speculate that
a techni-axion, needed for the solution of the strong CP Ipropcould be a natural
candidate (see for example Ref. [85]). In this way the two ponents for DM are
associated to two natural and complementary extensiote@M. An explicit model
containing axions from technicolor-like dynamics has beemstructed in Ref. [86].

3.4 Check of Thermal Equilibrium

It is assumed that the particles, including the LTB, are éritial equilibrium until
the point where the sphaleron process ceases to be impo@ansidering massless
particles the temperature where the particles would ddeasifound from the follow-
ing inequality

r>H, (3.63)

wherel’ = n{o4|v|) is the interaction rate and

T2

: 3.64
MPlanck ( )

H(T) ~ 1.66\/g;

with n the number densityy 4 the annihilation cross sectiom, the velocity of the
particles, the bracket means thermally averagedhe effective massless degrees of
freedom and" the temperature. The freeze out temperature then is

Ttrecne—out ™~ (]V[Planckc;%“)_1/3 = 0.9 MeV s (365)
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Fraction of LTB DM for second order PT with T* = 250GeV andppy, = 0.3 Gevient
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Figure 3.9:Top Panel The maximal fraction of local DM density allowed by the 90%
experimental constraint as function of the recoil energgsneable by the detector and
the parameteg of Eq. (3.49).Bottom Panel For the corresponding maximal fraction
of local DM density currently allowed by the 90% experiméitanstraint as function
of the recoil energy measurable by the detector@mek plot the associated LTB mass.
Both plots are presented with a second order phase tramnsitih 7* = 250 GeV, a
recoil energyl’ = 50 keV andppys = 0.3 GeV/eny.
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Freeze out temperature for the LTB particle as function of its mass
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Figure 3.10: Freeze out temperature for the LTB particlauastion of its mass. The
filled area corresponds to the particles out of equilibrium.

whereGF is the Fermi constant. The freeze out temperature is fambtle tempera-
ture of the electroweak phase transition, so thermal daitilin is maintained.

Our LTB patrticle, though, cannot be considered relatigiatid have a finite chemi-
cal potential different from zero. Finally the abundancasgmmetric, so the number
of particles is not equal the number of antiparticles. Aineste of the constituents in
the interaction rate are

B 3i (MLTB
n=grl 79 ( T ) , (3.66)
(oalvl) = GEmirplvl, (3.67)

where g is the degrees of freedom for the LTB particle, the functipis that of
Eq. (3.38) andn s is the mass of the LTB particle. Taking the rajigT" to be
constant- 10719 [71], the inequality becomes

mLTB) > 166\/9_*

T ~ QG%‘MPlanckh)'% ’

mirsT (3.68)
g« ~ 106 [71], v ~ 230 km/h (converted to a dimensionless number) and we take
g ~ 2. The freeze out temperature is now found, but depends on #ss of the
LTB particle. The result is shown in Fig. 3.10. It is seen frtm figure that for a
temperaturd™ of the sphaleron becoming unimportant, less than 220 Ge&Mrhss
of the LTB then has to be relatively small in order for the a¢dtion to be consistent.

It should be noted, that the value used to the raji@’ is a course estimate. If the
ratio happens to be larger, then the freeze-out temperdéoreases.






CHAPTER 4

Unification

There are several intriguing reasons for considering watifio of the gauge forces
of the SM. First, experimental values combined with one Ipegurbation theory, ex-
trapolated to very high energy, reveals that the SM gaugplocws do not unify, but
they show a trend that by including some extension it mighy veell be plausible.
Next, the quantization of electric charge is not explaimethe SM and can be a relic
of the breaking of a larger gauge group, €5@/(5). One can hope to find the right
mechanisms for flavor physics and connections between gaugsings via unifica-
tion in a unifying theory that is not at odds with experimebi@unds. The mentioned
unification into the groupU (5) has severe problems with proton decay, which still is
unobserved (or at a very low rate, hence e.g. physicistseagg.h

We are not going to make a thorough introduction to the vetgrésting topic of
unification, but we will just introduce some pragmatic hasdor computations and
will have to refer to the literature. Good places to starteage Refs. [87, 88].

4.1 One Loopg-function Computation

In the following, we will use the one-logp-function to relate the coefficients of the
logarithmic term in the different running coupling congtaim the SM to the measured
couplings at low energy (th& mass scale). This is done by assuming unification and
then extrapolating the coupling constants to the unificaticale, using the running
prescribed by the renormalization group equations, and #tieinating the energy
scale as well as the unification scale.

The s-function is defined as follows [9]

O\ A Ay
tat =p(A1) = B0V =Int, 4.1)
where) is the coupling constant,is the scale factor multiplying the momentum in the
renormalization group equations akds the coupling where the scale factoe 1. To
one loop thes-function takes the form

bo 3
= 4.2
B = Gt (42)
wherebg is a constant. The running coupling constant can then bgristied
4 1
)= ——==C—- —b! 4,
a”(t) 0 C 27rb0 nt, (4.3)
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with C' an integration constant, which can be fixed by a known valuke€oupling at
scaleM

_ _ 1 "
1 _ 1 _ =
o™} () = a7} (M) = =boln (1) (4.4)
with p the energy scale.

The s-function can in general be calculated to one loop with thesedge of the
group structure of the gauge theory [89]

2T(Rl)d(Rz) + %T(Sﬂd(Sz) — 13—102(6'1) = b0:| ) (4.5)

whereT'(R;) is the Casimir of the representation under which the ferriansforms
andd(Rz) is the dimension of the representation of the represent#io where R,
parametrizes the other gauge groups the fermion transfander. For scalars, the
same apply where the representations are denotesi by C>(G1) is the quadratic
Casimir for the adjoint representation of the gauge groopvarious group theoretical
properties of Abelian and non-Abelian groups, see AppeAdx

The 3-function coefficient, for the fundamental representation$# (V) is

5 O df+— > odo—— (4.6)

fefermlons s€bosons

For the two-index symmetric representationSf (V)

by = ? 3 df+N+2 S d, 4.7)

fefermions s€bosons

In the case of the Abelian group(1), the generato¥” has to be normalized with re-
spect to some normalization condition. The non-Abeliaregators are usually already
normalized as

Tr{T"T"} = %5“’7 : (4.8)

One condition commonly used is to set the trace oflit{é) of hypercharge equal to
the trace of the isospin generafty

TrY? =Trey? = Tr(T?)?. (4.9)

The reason why it is necessary to normalize the generatoeatty, is that they all
have to be embedded into a larger framework in the unifiedyhesd the hypercharge
generator can be multiplied by a constanthile the couplingy’ is divided byc and
the physics at the Lagrangian level is still the same.

The s-function coefficient in thé/ (1) case then becomes

2 ~ 1 ~
bo=3 3 Yf?df+§ > v, (4.10)

féE€fermions s€bosons

whereY is the normalized hypercharge generator.
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Assuming unification, we can write down Eq. (4.4) for eachggcoupling in the
SM

— _ 1 I
_ _ 1 W

Qo 1('[,4) = OéU1 — %b% In <M—U> 5 (412)
_ _ 1

oz () = ' = 5B} In (MLU> , (4.13)

whereay; is the coupling constant at the unification scale. Elimmgatheay and the
logarithmic factor, we get the following expression

O[Q_l(MZ)_a?Tl(MZ) — bg_bg (414)
a; ' (Mz) — a3 ' (Mz) by —bg’

where the indice$, 2, 3 denoteSU (3)., SU(2), andU(1)y, respectively. In order to
compare with experimental data, we need to relate the aoygbf the gauge forces to
the electroweak parameters

4re 1—s2
-1 _ _ Z
oy (Mg) = —9/2 = CiOCQED(MZ) (4.15)
2
Ly = _ Sz 4.1
062 ( Z) OCQED(MZ) ) ( 6)

whereagep(Mz) is the QED fine structure constant evaluated at4traass.
Evaluating the normalization condition for the (one fapfiysM, we get

10 3
— =2 = -, 4.17
03 = ¢ 5 ( )

Thus the hypercharge generator is

Y = gy : (4.18)
The left-hand-side (lhs) of Eq. (4.14) can be computed withéxperimental val-
ues and one obtains 0.72 using the data from the particle data group (PDG), see
Appendix A.3. The rhs. is then the prediction by the theomng H it is the exact value
of that of the Ihs., the model predicts unification.
One can amuse oneself with the trivial calculations of the wop -function
coefficients

4N, 1 41

=2+ —=— 4.19

=3 T 10 (4.19)
4N, 1 22 19

=224 - - == 4.20
3 Y63 6’ (4.20)
4N, 11N,

bg:Tg—Tz—m (4.21)

1Taking into account all three families will just be a factdr3con each side of the equation and thus will
not change: .
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whereN, is the number of SM generations and is the number of QCD colors. The
rhs. of Eq. (4.14) can then be evaluated talb&/218 ~ 0.53, which is quite off with
respect to the experimental value (the Ihs.).

Repeating the calculation for th#/(2)-Adj. model with a generic choice of the
hypercharge parametgr we first have to take care of the normalization of the hyper-
charge generator. In order to keep everything clear withegesto the normalizations at
different scales, we use the running coupling constapfsr the SM particle content,
where

My
ai(u), pe[MzgeMz], 1l<e<g —, (4.22)
Mz
with My being the unification scale. In the oversimplified approxiorg we imagine
that all the new particles are added to the theory at sddlg. For the total particle
content which is the SM and the technicolor particles, weotiethe running couplings
Qi
ai(p), pE Mz, My]. (4.23)
For the hypercharge coupling, the normalization constavitl in general differ from
that of the SM normalized one. Playing the same game as heferean write down

a relation between thé-function coefficienté% of the running coupling constants for
the full particle content and the running coupling consgtant

Gy (M) — 3\ (M) B - B
&fl(eMz) —&gl(eMZ) by — b2 ’

(4.24)

Using that
ai(eMz) = a;(eMz) , (4.25)

as well as Egs. (4.11-4.13) with the unification scale regaldry theZ mass scale (and
the fact that the couplings do not unify at themass scale), we obtain

-1 by -1 bo 7273
ay (Mz)—52Ine—az (Mz)+ 5-lne b — by

afl(MZ) — %Me—agl(Mz)—i— élne B 5(1) —g%

(4.26)

Taking for simplicity (and to fairly good approximation)eHimit of ¢ — 1, which
is the same as inserting all the new particles just afterthmass scale, the relation
simplifies to
ay ' (Mz) —a3'(Mz) _ bg—b§
ap'(Mz) — a3 (Mz) bl — b3

, (4.27)

where we identify the Ihs. as that of Eq. (4.14). We undecstais because there is
not yet added particles. The rhs. of Eq. (4.27), though, ainatthe coefficients of
the logarithmic terms, all the way up to the unification scilg and includes all the
particles. Computing the normalization constant for thpdrgharge generator for the
a7 coupling constant, we get

10N, 1
c< 3 J 4 1 (2+Ntc(Ntc+1)+2(18+Ntc(Ntc+1))y2)> =2N,+2,

24(1 + N,)

— = .
“T 10N, + 32+ Neo(Nie + 1) + 2(18 + Neo(Nie + 1))37)

(4.28)
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With this at hand it is easy to write down tlzefunction coefficients of the technicolor
model, here for generic number of technicoldig

= AN, +1

o= AN 1) — ) (4.29)

s AN, 1 22

b= 3%+ 5 (24 Nie(Wie +1)) = 5 (4.30)

= 4N, 11N,

b3 —_ g _ c 4.31
0 3 3 ) ( )

oy 2 11N;,

by =5 (Nee + 2Ny — —=, (4.32)

whereNy is the number of techniflavors, which is two in the case of theimmal one
doublet case. The index 4 refers to the technicolor forces iBha remarkable result.
All the way the computation is completely generic. The hgharge parameter has
not been specified, but still it has vanished from gheinction coefficients. There is a
simple explanation to this. We have only fermions (and gaaagons), but no scalars
in the theory. Thus, thg-function coefficiengé is simply

_ 9 . 9 2
1 _ 2 3\2
by = TV} = STH(T®)* = S(2N, +2) . (4.33)

which shows consistency, as it is the same result as that.q¥Ezp). This, however,
would not necessarily be the case if the theory had both tersnand scalars, as they
are weighted differently in thg-function coefficient, but not in the normalization of
the hypercharge generator.

In the case of three QCD colors, two technicolors and one lebabtechniquarks,
the coefficients simplify to

1
T S T SR (Y S (4.34)

It is then straightforward to check unification of the moded @ne obtains the remark-
able resulil5/22 ~ 0.68 for the rhs. of Eq. (4.27), which is much better than that ef th
SM. It should be noted, that this model (tH& (2)-Adj].) is not a full theory explaining
all the problems of Section 2.1.4. Therefore it is not knowrich contributions the
extended technicolor (or any equivalent extension of theleowill make. So if a
small correction is added to the running of the gauge cogplithey might very well
unify.

The couplings of the pure SM and the SM with tH& (2)-Adj. model as an ex-
tension, are shown in Figs. 4.1 and 4.2, respectively. Aer@sting point is observed
from Fig. 4.2 (but also from Eq. (4.34)) that the slope of thehniforce is such, that
unification of all four gauge forces in one point is not poksilf the electroweak sym-
metry has to break before chiral symmetry in QCD (assumiag@8B occurs when
the gauge force becomes strong).

It is interesting to see how good the approximation of taking 1 is, which is the
same as inserting the new particjast after theZ mass scale. The Ihs. of Eq. (4.26)
changes with respect to the lhs. of Eq. (4.14), when mowiagay from 1. Increasing
€ 1o 50, which corresponds to inserting the new particlesigttfihes theZ mass scale
implies a monotonic increase in the value of the Ihs. of EQ&%to below the 1 percent
level, so the approximation ef— 1 can indeed be considered quite good.
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Gauge couplings of the SM
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Figure 4.1: Extrapolation of the gauge couplings in the SMrekd of unification is
observed, but it is far from exact.

Gauge couplings of the SU(2)-Adj. model with generic y
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Figure 4.2: Extrapolation of the gauge couplings in #1&(2)-Adj. model. It is seen
that the gauge couplings of the SM do almost unify (but asutaled above, it is still

not exact, but far better than in the pure SM case). The gaoggliag value of the
techniforce at the&Z mass is taken to be the critical coupling of Eq. (2.46).



CHAPTER §

Competing Models

It is out of the scope of this thesis to make a review of all thepeting models, so
in the lack of space we will just mention a few of them and rédethe literature.

It is already mentioned in the introduction that there atddast) three different
methods to cure the naturalness problem of the SM Higgs b@senSection 1.2).

Of recent works in the technicolor field, it is worth to memti€hristensen and
Shrock’s extension of technicolor with two ETC groups [90ong and Yee have
made a holographic estimate of the oblique corrections fkiwg technicolor [91].
In the line of the holographic approach, Hirn and Sanz hawesvalthat a negative
parameter in technicolor is possible [92]. Davoudias| hassiered a cosmological
scenario with a techniaxion [85]. Lane has considered logsvgansearches in existing
experimental data sets for technicolor (in the TechnicBtoaw Man framework) [93],
but also Feligioni has made work in this direction [94]. Retceonsiderations in the
direction of topcolor assisted technicolor models havenbeade, see Refs. [95, 96].
But this is just a few of the recent works.

A very popular model, in the supersymmetric scenario, isnir@mal supersym-
metric SM (MSSM). As already explained, it solves the ndhess problem by cancel-
lation of quadratic divergences in the quantum correcthmetseen the Higgs bosons
(there are usually two doublets, in order to make the higgsanomaly free) and the
higgsinos. This is in some way the same as saying that we wédralieve in an extra-
polation of the SM up to the Planck scale (or GUT scale), whiely be naive but might
as well be nature (and very good for the string theory comiguniAmong the advan-
tages of the MSSM is that everything is perturbative andutalide. This fact has made
many theorists make a great effort exploring signaturesthus it is a model where
the experimentalist really know what to look for (which iretend is how physics is
determined!). This is a problem with strongly interactihgaries; it is much harder to
tell exactly what are the observables seen at the collidee@xent. The MSSM also
has some candidates for dark matter, which typically is araéno WIMP. But there
are still problems left in the MSSM: Flavor physics, th@roblem (which in shortis a
new hierarchy problem of the model), the strong CP problehidlvis problematic as
an axion is not directly compatible) and finding a mechanissoftly break supersym-
metry. For references, a good place to start is in Refs. [8,/99, 58]. An introduction
to supersymmetric dark matter candidates can be found ifRefg[73].

In the little Higgs models, the Higgs boson is a pseudo Gotustoson and its
mass is protected from one loop quadratic divergences byajppate global symme-
tries. The models rely on eollectivesymmetry breaking in which there is orlijtle
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or no fine tuning necessary. There are different variantsedtinimal Moose and the
Littlest Higgs. In this scenario typical problems still doeestablish their phenomeno-
logical naturalness. Interesting further reading can baddn Refs. [100, 101].



CHAPTER 6

Conclusions and Outlook

We have introduced some of the problems in particle physidsmaotivated why
especially electroweak symmetry breaking is an interggtipic to study with respect
to the “guarantee” of experimental discovery of whatever tlew physics may be.
Next, we have introduced technicolor in basics, the problesith technicolor and the
common notions in this field and finally the Sannino-Tuominedel, which solves
some of the phenomenological problems.

Then we move on and investigate the spec#i¢(2)-Adj. model more in depth
and construct effective theories [1] and make brief consitilens on the signatures.
We compute the Feynman rules for the linearly realized @ffe¢heory, which can be
found in Appendix C. As it is seen in many places in moderniglarphysics, cos-
mological constraints, and here we mean constraints onrdatter, can be used as a
supplementary guideline for the model in question. We tharsstruct a dark matter
candidate/component, compute what would be the relic amoeland consider the
constraints of direct detection from earth based experisi@h We consider both the
case of a first order electroweak phase transition and a dexder one. We find, that
is plausible that our LTB dark matter candidate can cortstitue whole amount of the
observed dark matter, but depending on the parangetghich is a weighted sum of
the ratios of lepton andewlepton to baryon densities and also what is the ekl
density of dark matter in the halo. We then make a check oftteemtal equilibrium
for the technibaryons and find that their masses have to hévedly low or the tem-
perature, where the sphaleron process becomes unimpbasid be relatively high,
in order for the computation to be completely valid. Findhg problem of unification
is considered and we have shown that it might be plausiblete hnification within
the model, if we take into account that the model is not coteple the sense that an
extension for mass generation and flavor physics has to begoated.

This leads to the question of where to go next. Flavor physicsa mass generation
mechanism is one thing that would be interesting to invastigAs already mentioned,
it is an ongoing project with Fabio Maltoni and Francescorfiam of implementing
the model into a software called MadGraph for phenomenoégiomputations. An-
other future project which we have already started with TasRyttov and Francesco
Sannino, is to use unification as a guideline to select (aschdil) technicolor models
in “all” higher dimensional representations, with or witliaupersymmetry.

A further idea could be to make thf#/(2)-Adj. model N = 4 supersymmetric at
some higher scale. Other suggestions could be extra diove)s.g. in the line of the
holographic approach, which is seen in the literature.






APPENDIX Q[

Conventions and ldentities

We use the mostly negative metric which is dig-1, —1, —1) and in general the
conventions of Wess and Bagger [58].

A.1 Identities for the Weinberg Angle

g% cos? 0, = (92 + g’2)(1 +sin* 0, — 2sin® 0w) (A.1)
g"%sin” 0, = (g% + ¢'*)sin* 4, (A.2)
g9’ sin20,, = 2(g* + ¢'*)(sin” 0, — sin* 6,,) (A.3)
¢%sin? 0, = €2 (A4)
g% cos? 0, = €2 (A.5)
g9’ sin 20, = 2¢? (A.6)
g*sinfy, = g*sec By, (1 —sin?6,,) (A.7)
gq' sin 6, = g% sec 0., sin? 0, (A.8)
g9’ cos 20, = egsec B, (1 —2sin®6,) (A.9)
g% sin 20, = 2egsec 0 (1 — sin? 0w) (A.10)

¢'? sin 20, = 2egsec by, sin” 0, (A.11)
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A.2 Properties for Unitary Groups

SU(N):
N2 -1

C2(0) = 5 (A.12)

d(0) = N (A.13)

r(d)=N?—-1 (A.14)

() = M — % (A.15)

Co(Adj) = N (A.16)

Co(M) = WHHWN 1) Q%N —1) (A.17)

d(CD) = g(N +1) (A.18)

() = @(ngd(mj) _ N;27 A19)

wherer is the number of generators] is the fundamental representation, Adj. is the
adjoint representation arid ] is the two-index symmetric representation.
U(1):

Co(0) = Y? (A.20)
T(O) = Y? (A.21)
dd) =1 (A.22)

Cy(adj) =0, (A.23)

whereY is the normalized hypercharge.

A.3 Measured Electroweak Data

From the particle data group we obtain the following elestrak data

Mz = 91.1876 GeV (A.24)
as(Mz) = 0.1176(20) (A.25)
agpp(Mz) = 127.918 (A.26)

sin?(0,,) = s% = 0.23122(15) (A.27)
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Generators

Itis convenient to use the following representatiorbdf(4)

. (A B ., (C D
S = (BT _AT> ) X'= (D]L CT) ’ (Bl)

whereA is hermitian,C is hermitian and traceles® = — BT andD = D7T. The S
are also a representation of tH&(4) generators, and thus leave the vacuum invariant
S°E + EST = 0. Explicitly, the generators read

o 1 T 0 _
S —m(o —TaT>, CL—17...,47 (BZ)

wherea = 1,2,3 are the Pauli matrices and = 1. These are the generators for
SUv(2) x Uy (1).

a __ 1 O Ba —
S —m(BaT 0) s Cl—5,6, (B3)
with
B =12, BS=ir?. (B.4)

The rest of the generators which do not leave the vacuumianizare

, 1 i

RN, (76 T?T)7 i=1,23, (8.5)
and . ,

AXZ:2—\/§<]:§)”L I(;)v i=4,...,9, (86)
with

D*=1, D=7 DS¥=r7!

D5 =il, D7 =713, D? =irt . (B.7)

The generators are normalized as follows

1

Tr [S°S°] = Tr [X*X?] = 55“, Tr [X'S] =0. (B.8)






APPENDIX Q:

Feynman Rules for the
SU(2)-Adj. Model

The convention used here is that the Goldstone bosons dfi¢toeyt are incoming
states so it holds from left to right, that the technibaryomber is conserved (zero).
The gauge bosons are outgoing states.

oo
\\p‘/u
/'\/W M = g sec 0y, (1 — i2sin’ 911)(1 + y)) (p - p/)u (C'l)
//p“
HUU
mub
\ p;ﬁ
AN ZH = —jgysec by, sin’ 0, (p— p/)u (C.2)
/ Py
HUD
HEE
\ p‘,u

AN ZH = —% sec 0y, (1 —i2sin% 0, (1 — y)) p—p)u (C.3)
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o
\\pl/u‘
:W'v Zh = % secOuw(p— ') (C.4)
//pu
HO
H+
\\pl/u‘
>'\/W ZH = igsec By, sin® 0, (p—p)u (C.5)
//p“
-
0T
\\p:L
/\m At = e(1+y)(p—p'), (C.6)
)/ P
HUU
HU7D
\ p;L
Ao AR =ey(p — p/)u (C.7)
) P
HUD
HBE
\\p,/u
A Al = —e(1—y)(p— Py (C.8)
//p“
HDD
H+
\ p:L
A~ At =—e(lp—p'), (C.9)
Pu
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\\p;L
/)f\/\m wte = _%(p_p/)u
) P
HUU
Hﬁﬁ
\\pil
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/)f\/\/\, Wte = —§(p—p')u
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g
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\ pL
A\ g
Fa ey WHe = E(P_P)M
//p“
o
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(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)
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Feynman Rules for the SU(2)-Adj. Model
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+ 2sin® 0, (4 4 5y + 4y2)>
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